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Abstract
Schistosomiasis is a neglected tropical disease that threatens 700 million and impacts 250 million people per year. The
disease is caused by blood flukes of the genus Schistosoma, which enter the human body through contact with infected
water. One species, S. haematobium, sheds eggs through the urinary tract, and can thus be diagnosed by examining
urine samples for these eggs. Because concentrations of schistosomiasis infection are highly localized and are often
in remote areas, rapid and robust field diagnosis is crucial to both individual diagnosis and the mapping that informs
control efforts. AI algorithms, if properly designed, can speed up and improve both diagnosis and mapping through
scalable, accurate analysis of images of urine samples. To develop such algorithms, we offer the dataset described
here. It consists of paired bright- and darkfield images of urine samples collected in two distinct field studies in Cote
d’Ivoire, Africa. There are images from 725 patients, of whom 150 were schisto-positive and contain S. haematobium
eggs. Crucially, each patient has sufficient images to diagnose S. haematobium infection, so the dataset can be used
to realistically test the diagnostic value of algorithms for clinical use. The division into two studies allow testing of
algorithm generalizability. Due to exigencies of the data collection protocol, the images display a variety of qualities,
from clear to blurry, which further allows testing of algorithm robustness to realistic noise. The dataset is thus well-suited
to developing algorithms that can be of concrete value in schistosomiasis control efforts.
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©2024 Silué and Coulibaly. License: CC-BY 4.0

1. Introduction1

This paper describes a dataset of images related to schis-2

tosomiasis infections, made publicly available for AI re-3

searchers to use. A necessary condition for any AI solution4

to successfully translate to deployment in a clinical set-5

ting is that the AI development be, from the start, firmly6

grounded in and shaped by an understanding of the needs7

and constraints of the clinical use case. Therefore this8

Introduction describes the medical specifics of schistoso-9

miasis, its diagnosis, and treatment. Sections 2 and 3 then10

describe the dataset in detail, and the Discussion contains 11

suggestions as to use of the dataset. 12

1.1 Schistosomiasis 13

Schistosomiasis is a worm infection that impacts over 250 14

million people worldwide, with 90% of the burden on the 15

African continent. The infection is acquired through direct 16

contact to contaminated fresh water, and requires a spe- 17

cific species of snail to complete its lifecyle. The causative 18

pathogen of schistosomiasis is the blood-dwelling trema- 19
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tode of the genus Schistosoma. Globally, the most preva-20

lent species are Schistosoma mansoni and S. haematobium,21

both living respectively, in the mesenteric and the perivesi-22

cal venules. The worms lay eggs that are excreted with the23

feces or urine, and release larvae (miracidia) that infect24

the suitable intermediate host snails and then mature to25

a form that can infect humans and complete its life cycle.26

Schistosomiasis leads to a wide range of clinical presenta-27

tions ranging from sub-clinical infection to chronic symp-28

toms (i.e., abdominal pain), with additional complications29

(i.e., periportal fibrosis, bladder cancer, genital ulcerations)30

and even death. Estimates of the impact of schistosomia-31

sis include 140 million people infected, with 11,500 deaths32

and over 1.6 million disability-adjusted life years annually33

(WHO, 2023, 2002; Ogongo et al., 2022; WHO, 2015).34

WHO has set an ambitious goal to eliminate schistoso-35

miasis as a public health concern by 2030, calling on all en-36

demic countries to intensify control interventions - mainly37

mass drug administration using (MDA) praziquantel in en-38

tire endemic communities - and strengthen surveillance ini-39

tiatives (WHO, 2022). Successes in the morbidity control40

of schistosomiasis based on MDA have been observed in41

many endemic areas (Japan, China, Egypt etc.) including42

some sub-Saharan African countries (Utzinger et al., 2009;43

Rollinson et al., 2013).44

1.2 Diagnostics for schistosomiasis45

However, a key barrier to elimination of schistosomiasis is46

lack of a diagnostic tool to cost-effectively target infected47

individuals when the prevalence become very low, and to48

monitor MDA programs in areas of high prevalence.49

The diagnosis of schistosomiasis in endemic settings is50

challenging due to the paucity of laboratory resources in51

lower income rural regions where the majority of infections52

occur. Diagnosis is typically through direct visualization of53

the egg, which measures approximately 120 microns (µm),54

on a stool (S. mansoni) or urine (S. haematobium) sample.55

Sample concentration techniques increase the yield of di-56

agnostic testing. The World Health Organization outlines57

standard laboratory protocols for sample preparation and58

microscopic diagnosis. Other mechanisms for diagnosis,59

more commonly performed in higher income areas include60

serology and molecular techniques.61

Given the paucity of laboratory capacity and the extent62

of infection (and reinfection) in endemic settings, WHO-63

sanctioned Mass Drug Administration (MDA) programs de-64

crease the burden of schistosomiasis by providing treat-65

ment to entire communities in geographic regions where66

the prevalence of infection is greater than 10%. These pro-67

grams reduce morbidity and mortality from schistosomiasis,68

and may be run on an annual or semi-annual basis depend-69

ing on the community burden of disease. To support this,70

the WHO has outlined a significant need to monitor MDA 71

programs aimed to control and eliminate schistosomiasis. 72

The WHO also highlights an urgent need for tools to 73

help monitor and evaluate such MDA programs (World 74

Health Organization Diagnostics Technical Advisory Group 75

(DTAG), 2021). Mapping and diagnosis of schistosomiasis 76

has been done so far with Kato-Katz (KK) and urine filtra- 77

tion (UF), known to be specific but increasingly insensitive 78

as prevalence declines or in low prevalence areas (Colley 79

et al., 2017). 80

Recently, portable diagnostic tools have shown promis- 81

ing performance in the diagnosis and screening of neglected 82

tropical infections (Vasiman et al., 2019). They may help 83

identifying communities eligible for MDA and other inter- 84

ventions (health education, WASH etc.), and they have 85

attributes that may be useful in monitoring and evaluat- 86

ing schistosomiasis control programs given that they are 87

portable, battery powered, relatively easy to use, and pro- 88

vide a result in real time (Rajchgot et al., 2017). 89

Handheld digital microscopy is a possible method to 90

evaluate schistosomiasis control programs as such devices 91

are portable so can easily be brought to endemic regions, 92

and are battery powered so do not need to rely on a incon- 93

sistent power grids. Such devices are also able to digitize 94

the image, allowing for automated diagnosis. 95

In this work, we provide a dataset collected on one such 96

device, a portable mobile phone-based microscope called 97

the SchistoScope. This device has been demonstrated as a 98

useful tool for point-of-care diagnosis of S. haematobium 99

and other NTDs, such as Loa loa (Armstrong et al., 2022; 100

D’Ambrosio et al., 2015; Kamgno et al., 2017). 101

1.3 Role of AI 102

Effective AI-driven automated diagnosis is a key approach 103

that can provide breakthroughs to improving the efficiency 104

of screening, because it can overcome the challenges of a 105

paucity of trained microbiologists and laboratory personnel. 106

However, schistosomiasis diagnostics are currently gravely 107

underserved by the medical AI community. The purpose of 108

this dataset is to enable development of AI solutions that 109

can meet the stringent clinical requirements of this use 110

case. In particular, the dataset enables development and 111

evaluation of models (i) at the patient-level (since it has 112

725 patients); (ii) on true holdout sets (since two studies 113

are represented); and (iii) for robustness to blur noise. 114

2. Dataset acquisition details 115

This section describes how the dataset was collected. 116
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2.1 Sample collection117

Ethical permission for this study was granted by Comité118

National d’Ethique des Sciences de la Vie et de la Santé119

(CNESVS) in Côte d’Ivoire and the University Health Net-120

work, Toronto, Canada (REB 186-21/MSHPCMU/CNESVS-121

km)). Permission was also granted by the local Health Dis-122

trict officer. School-age children between 6 and 15 years123

were invited to participate, and both signed parental con-124

sent and the children’s assent were required for inclusion.125

Sample processing and dataset collection happened dur-126

ing two visits to the Azaguié region in Côte d’Ivoire: A127

first visit in March of 2020, described in Coulibaly et al.128

(2023); and a second visit in November of 2021, described129

in Coulibaly et al. (2024).130

Patient sample processing is described in (Armstrong131

et al., 2022). Briefly, for each patient, 10 mL of urine were132

collected in a sterile urine container between the hours of133

10 am - 2 pm. The cup was shaken and 10mL of urine was134

removed by a syringe and pressed through a plastic cap-135

illary designed to concentrate S. haematobium eggs. The136

capillaries were designed to capture objects that are the137

size of S. haematobium eggs by having a channel that is 3138

mm wide and a height that decreases from 200 µm to a 20139

µm pinchpoint over a 30 mm length. The capillaries have140

an inlet, where the disposable syringe is connected, and a141

circular outlet port that allows excess urine to exit. In the142

field, the eggs, as well as other debris found in the patient143

urine samples, are trapped in the capillaries as the urine144

solution flows through. The capillaries help to concentrate145

the sample and are simultaneously used for imaging the146

sample contents using a handheld digital microscope.147

2.2 Image acquisition148

The images for both datasets were acquired using the Schis-149

toScope, a portable, mobile phone-based microscope de-150

scribed in Armstrong et al. (2022). Briefly, this device151

uses an Apple iPhone 8 coupled to an additional reversed152

lens to capture images with a large field of view (FoV) and153

< 5 µm resolution over a 12-mm2 area. The SchistoScope154

uses two sets of LEDs for illumination, allowing for multi-155

contrast image acquisition:156

(i) Brightfield: A set of LEDs positioned directly below the157

sample enables brightfield imaging.158

(ii) Darkfield: An additional set of LEDs is positioned to the159

side, in a configuration such that the light hits the sample160

but does not directly hit the imaging lens. In this darkfield161

illumination, objects trapped in the capillary scatter the il-162

lumination light, and only the scattered light is collected163

by the imaging lens. This creates images with bright ob-164

jects and a dark background. Field clinicians report that165

darkfield is a valuable modality for manual assessment. For166

example images, see Fig 2.167

After sample preparation, the capillaries with the pa- 168

tient sample are inserted into the SchistoScope for image 169

acquisition using both the brightfield and darkfield con- 170

trasts. The capillaries are physically translated using a ser- 171

vomotor along their horizontal axis so that multiple loca- 172

tions can be imaged. Six fields of view of the capillaries 173

were imaged using brightfield and darkfield illumination. 174

3. Dataset contents 175

This section details the structure and contents of the dataset. 176

3.1 Structure 177

The dataset is structured as follows. There are image sets 178

from two different field studies, conducted in March 2020 179

and November 2021. The March 2020 dataset has 349 180

patients, 91 of whom are positive. The November 2021 181

dataset has 376 patients, 59 of whom are positive. Each 182

patient has 3 slightly overlapping fields of view (FoVs), cap- 183

tured with both brightfield and darkfield, giving 6 images 184

per patient. 185

3.2 Egg locations and FoV details 186

Due to the design and flow direction of the capillaries, most 187

S. haematobium eggs and debris are found near the pinch- 188

point and the outlet port (since some eggs get past the 189

pinchpoint). These crucial regions are captured within the 190

final 3 FoVs. In high parasitemia patients, eggs are occa- 191

sionally found in the FoV immediately upstream from the 192

pinchpoint. The other 4 upstream FoVs are empty. There- 193

fore the dataset includes 3 FoVs per patient. 194

We note that the device alignment shifted slightly be- 195

tween the two studies, resulting in a change as to which 196

FoVs contain the most eggs: (i) In March 2020, most eggs 197

were trapped in FoVs 1 and 2 (which in this study cor- 198

responded to outlet port and pinchpoint), with occasional 199

eggs in the 3rd FoV; (ii) In November 2021, FoVs 2 and 200

3 contain the outlet hole and pinchpoint and thus almost 201

all the eggs, while image 1 is downstream from the outlet 202

port and thus generally empty. Example patients showing 203

these FoV layouts are given in Fig 1. 204

The provided images are 4032 × 3024 pixels, with pixel 205

pitch ≈ 1 µm/pixel. The optical resolution of the Schisto- 206

Scope is estimated to be < 5 µm (Armstrong et al., 2022) 207

and the images can be downsampled 2× or even 3-4× An 208

example of brightfield and darkfield images of a FoV are 209

shown in the top part of Figure 2. The S. haematobium 210

egg locations in those images are then highlighted by green 211

boxes in the bottom part of Figure 2. Zoomed-in examples 212

of S. haematobium eggs and distractor objects are shown 213

in Figure 3. 214
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Figure 1: Three brightfield FoVs, showing outlet port and pinchpoint. Top: March 2020. Bottom: November 2021.
The degree of overlap can be inferred from landmark features. The overwhelming majority of eggs are in
FoVs 1 and 2 (for March 2020) and FoVs 2 and 3 (for November 2021).
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Figure 2: Example images of a FoV in brightfield and darkfield (top) and the corresponding S. haematobium egg
annotations

Figure 3: Examples of S. haematobium eggs and distractor objects found in the brightfield and darkfield dataset images.
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3.2.1 Quality215

Due to the experimental nature of the capillaries and de-216

vice, field testing uncovered a tendency towards images217

blurred by stray droplets or smears of water or urine on218

parts of the capillary window and/or device optics.219

For the same FoV, BF and DF images can have different220

blur characterists due to optical effects. Sometimes a single221

image has different subregions that are blurred and in focus.222

Statistics for blur prevalence are given in 3.4.223

3.3 Annotations224

There are two types of annotations: object-level S. haema-225

tobium egg (as well as ”doubtful” object) locations, and226

image-level quality labels.227

Egg locations All of the images were reviewed by two228

annotators that were trained to identify S. haematobium229

eggs. The first annotator examined all images and labeled230

S. haematobium eggs and “doubtful objects”. After this231

first pass, the second annotator went through the images232

to revise the annotations and mark any S. haematobium233

eggs that the first annotator missed. A third annotator234

was consulted in cases of disagreement.235

“Doubtfuls” are objects that look similar to an egg,236

such that the annotators could not definitively label them237

as eggs or as non-eggs. This uncertainty makes them ob-238

jects of particular interest, which require special care during239

ML model training and assessment.240

Distractor objects are not annotated. We strove to241

completely annotate eggs and doubtful objects, so any un-242

labeled object can be (we hope) considered a distractor.243

The annotations for the entire dataset are provided in244

a spreadsheet format, one for each study. For each anno-245

tation, the spreadsheet contains information on the patient246

ID, parent image name, object label (egg or doubtful), and247

(x,y) coordinates of the centre of the object.248

Because the brightfield and darkfield images of an FoV249

almost exactly match spatially, the (x, y) coordinates of250

eggs in paired images are typically within a few pixels of251

each other. However, in some cases an object is doubtful252

in one contrast but not the other, or not visible in one of253

the contrasts due to blur. In these cases the annotations254

of paired images do not match.255

Quality labels The images of the March 2020 dataset256

were also given an approximate quality score by one anno-257

tator. All of the images in the dataset are given a score258

from 0-12, where a lower score corresponds to an image259

of better quality. The quality rating meanings are given in260

Table 3.3.261

The three main aspects of imperfect quality are: blurri-262

ness (due to failures of the SchistoScope autofocus mech-263

anism), haziness (due to evaporation of urine or other liq-264

Table 1: Quality ratings for image blurriness. These rat-
ings roughly group into 4 categories: 0 - 1 excel-
lent; 2 - 4 medium-high; 5 - 7 medium; 8 - 12
lowest.

0 perfect 2 little blurry
1 almost perfect 3 little hazy

4 little wet
5 blurry 8 blurry and hazy
6 hazy 9 blurry and wet
7 wet 10 hazy and wet

11 dirty, other
12 hazy, blurry, and wet

uid), and wetness (due to the presence of urine or other 265

liquid on the capillaries). These three categories are repre- 266

sented in the quality annotations provided in a spreadsheet 267

format. Since the autofocus routine was run separately 268

when acquiring brightfield and darkfield images, and since 269

the contrasts have optical properties, brightfield and dark- 270

field images of the same field-of-view often have different 271

quality scores (see 3.4). 272

3.4 Dataset statistics 273

This section provides patient-level egg count statistics for 274

each study, and also image-level quality statistics for March 275

2020. 276

Egg counts March 2020 had 258 negative and 91 pos- 277

itive patients, with a total of 2999 labeled eggs and 308 278

labeled doubtfuls. November 2021 had 317 negative and 59 279

positive patients, with a total of 2478 labeled eggs and 449 280

doubtfuls. Patient-level count distributions for each study 281

are given in Fig 4 (A and B). Most of the patients have light 282

intensity infections (WHO, 2002). Note that these are not 283

per-FoV counts, because the clinically-relevant unit is the 284

patient, not the FoV (or image, or image patch). Many 285

FoVs contain no eggs, especially in low parasitemia pa- 286

tients. 287

Quality The per-image quality (i.e. blurriness) distribu- 288

tions for brightfield and darkfield images in the March 2020 289

study are shown in Fig 5 (A and B). Because bright field 290

and dark field images were affected in different ways by 291

blur, even in the same FoV, each contrast has different 292

histograms. These quality differences between paired im- 293

ages (brightfield-darkfield) are scatterplotted in Fig 5 (C). 294

3.5 Data location and availability 295

The dataset was structured according to FAIR principles 296

(Wilkinson et al., 2016). It will be hosted on and freely 297

available from the AFRICAI Repository at the Euro-Bio- 298
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Figure 4: Histograms of egg counts by patient, binned by 5’s (i.e. 1-5, 6-10, etc). A: March 2020, 91 positive patients.
B: November 2021, 59 positive patients.

Figure 5: Histogram of March 2020 image qualities. A: Bright field. B: Dark field. C: Scatterplot of dark field vs bright
field image qualities (each point is an FoV; the points are jittered to show quantities). The same FoV often
has different image quality in the two contrasts.

7
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Imaging Medical Imaging Archive XNAT299

(Martijn and Tsirikoglo, 2024).300

Note to reviewers: Pending initial acceptance, we will up-301

load the data to the repo before final acceptance (≈ mid-302

August). At that point we will insert exact download details303

here.304

4. Discussion305

AI can certainly have vast impact for good in the diagnosis306

of schistosomiasis. However, for any AI model to success-307

fully translate to the clinic, and thus benefit sick people,308

it is crucial that the AI development be firmly grounded in309

and tailored to the particular needs of the clinical use case.310

For example, metrics to evaluate a model’s performance311

should reflect the role it will serve as part of a clinical solu-312

tion, as opposed to based on generic performance metrics313

imported from the AI literature. For a detailed discussion314

of how to select metrics to guide AI development, given for315

automated malaria diagnosis with applicability to schisto-316

somiasis, see Delahunt et al. (2024).317

Crucially, when proposing solutions in medical appli-318

cations, the rules of evidence are determined by medical319

norms, not by AI standards and conventions. See WHO’s320

document on the types of evidence required to validate AI321

models for medical use cases (WHO, 2021). See also dis-322

cussions of AI metrics in Reinke and Tizabi (2024) and323

(Varoquaux and Cheplygina, 2022).324

The dataset described here is well-suited for AI efforts325

to realistically address the problem of schistosomiasis di-326

agnosis. In particular, development and evaluation can327

operate at the patient level, the two studies enable true328

holdout evaluation, and the blurring effects enable devel-329

opment and evaluation for robustness to the realistic case330

of lower quality images. Despite the stringent performance331

requirements in the WHO TPP (World Health Organiza-332

tion Diagnostics Technical Advisory Group (DTAG), 2021)333

(e.g., 97.5% specificity and 85% sensitivity even at very334

low parasitemias), we are confident that AI models, if de-335

veloped with proper attention to the specific clinical needs,336

will have powerful impact in reducing the damage from this337

neglected tropical disease.338
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