
Bug vs machine

LearningIntroduction
We seek to characterize the learning tools used in biological

neural networks, in order to port them to the machine learning
context. We focus on the regime of very few training samples.

The Moth Olfactory
Network is among the
simplest biological neural
systems that can learn.

We developed a
computational model of
the Moth Olfactory
Network, and set it to learn
the MNIST digits. The

moth brain learns to read given very few (1 to 10) training
samples per class. In this regime the moth out­performs
standard ML methods (Fig 5).

Our experiments elucidate biological mechanisms for fast
learning that rely on competitive inhibition, sparsity, and
Hebbian plasticity. These represent a novel, alternative toolkit
for building neural nets.

Sparsity focuses Hebbian growth
High­dimensional, sparse neural layers are a widespread

motif in biological NNs. In the moth, sparsity in the Mushroom
Body controls noise and thus focuses Hebbian growth:
Hebbian growth is an
AND gate. Sparsity
enforces silence in
one neuron or the
other, preventing
synaptic growth from
non­relevant signals.

Figure 6: Optimal
accuracy (blue domed curve) occurs at 5­20%, as in biological
systems. This gives a compromise between high learning focus and
high intra­class signal­to­noise ratio (SNR). Red curve = mean
separation of trained vs control (learning focus). Black curve = mean
intra­class SNR. (Learning focus and SNR are scaled for plotting.)

Simulations

Neural Architecture

Our AL­MB network design follows the known biophysics.
Neurons are integrate­and­fire units with coupled ODEs for
firing rates (inset a, b) with
an added term for
octopamine. Plasticity is
Hebbian, ie "fire together,
wire together" (inset c). The
firing rates are evolved in
time as stochastic differential
equations (inset b). The
model was calibrated to in
vivo firing rate data from
moths exposed to odors and
octopamine (ie learning).

Discussion
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Putting a bug in machine learning: a moth brain learns to read MNIST

The actual moth brain handles about 60 features. We created
an MNIST­like task by selecting a subset of pixels from
downsampled images, giving 85 pixels­as­features (Fig 3).

For learning, one EN is assigned to each digit class. Training
consistently and robustly diversifies EN response (Fig 4).
Moths randomly generated from template attain over 75%
median accuracy given 10 training samples per class.

To learn, the moth olfactory network uses just a few core
tools: A noisy pre­amp network with competitive inhibition;
Hebbian plasticity regulated by a high­dimensional sparse
layer; and generalized (global) stimulation during training.

These biological tools are well­suited for combination into
larger, deeper neural nets, just as convolutional kernels, etc,
are combined to build current DNNs.

The moth is on the bottom rung of the ladder of biological
learning complexity. Yet it is a strong rapid­learner, and in fact
out­performs standard ML methods.

The ability of this simplest of biological NNs, and the proven
success and variety of biological NNs, argue for the potential
benefit of porting biological toolkits to ML tasks.
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Figure 3: Digits from the downsampled MNIST dataset.

Figure 4: Pre­ and post­training EN time courses (normalized) for a
typical moth. Each timecourse shows an ENi's response to 150 digits
(15 ones, then 15 twos, etc). At top left is a naive response (all ENs
similar). Other subplots show the trained ENs (targeted classes are
framed in red).

Figure 2: Neural firing rate heatmap of a learning simulation,
showing neuron timecourses from each network, time axes aligned
vertically. Timecourse events:
(1) No odor: All regions are silent. (2) Two odors are delivered, 3
doses each: AL, MB, and ENs display odor­specific responses. (3)
Training on the first odor (with octopamine): All regions respond
strongly. (4) The odors are re­applied: The AL returns to its pre­
trained activity since it is not plastic. In contrast, the MB and EN are
now more responsive to the trained odor, crossing an action
threshold (green dotted line). Response to control odor is
unchanged.

Figure 5: Comparison of various classifiers. The moth out­performs
SVM, nearest neighbors, and a neural net (one hidden layer) at very
rapid learning (10 or less training digits per class). At 100 digits per
class, the moth falls behind. Mean +/­ std dev (medians are slightly
higher), N = 13.

Figure 1: Inputs feed 1­to­1 into a pre­amp layer (Antenna Lobe, AL)
with ~60 noisy units and intra­layer competitive inhibition. The AL
feeds­forward with sparse connectivity into a high­dimensional
(~4000 units) but sparsely­active layer (Mushroom Body, MB). The
only plastic connections in the system are into and out of this sparse
layer. Connection maps and weights are largely random. The MB
feeds­forward to readout units (Extrinsic Neurons, ENs). Learning
occurs when EN responses to different classes diversify.




