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Abstract
Medical machine learning algorithms are typi-
cally evaluated based on their object-level ac-
curacy vs. that of skilled clinicians, a chal-
lenging bar since trained clinicians are usually
better classifiers than ML models. However,
this metric does not fully capture the realities
and requirements of the actual clinical task: it
neglects the fact that humans, even with per-
fect object-level accuracy, are subject to non-
trivial error from the Poisson statistics of rare
events, because clinical protocols often specify
a remarkably small sample size due to the exi-
gencies of clinical work. For example, to quan-
titate malaria on a thin blood film a clinician
examines only 2000 red blood cells (0.0004 µL),
which can yield large Poisson variation in the
actual number of parasites present, so that a
perfect human’s count can differ substantially
from the true average load. In contrast, an ML
system may be less accurate on an object de-
tection level, but it may also have the option
to examine much more blood (e.g. 0.1 µL, or
250×). Thus, while its parasite identification
error is higher, the Poisson variability of its es-
timate is lower due to larger sample size. For
both ML systems and humans, clinical perfor-
mance depends on a combination of these two
types of error.

To qualify for clinical deployment, an ML
system’s performance must match current stan-
dard of care, typically a demanding target. To
achieve this, it may be possible to offset a sys-
tem’s imperfect accuracy by increasing its sam-
ple size to reduce Poisson error, and thus at-
tain the same net clinical performance as a per-
fectly accurate human limited by protocols with
smaller sample size.

In this paper, we analyse the mathematics
of the relationship between Poisson error, clas-
sification error, and total error. This mathe-
matical approach enables teams (software and
hardware) optimizing ML systems to leverage a

relative strength (larger sample sizes) to offset a
relative weakness (classification accuracy). We
illustrate the methods with two concrete exam-
ples: diagnosis and quantitation of malaria on
blood films.

Keywords: Poisson error, malaria, quantita-
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1. Introduction

For ML solutions to be clinically useful, their per-
formance must match or exceed current clinical re-
quirements. During proof-of-concept, we typically
evaluate ML models against a human defined ground
truth, and judge its performance against human ac-
curacy. However, this is not the only relevant axis
of performance at the clinical task. Humans and ML
have different strengths and weaknesses, and ML’s
strengths can be leveraged to offset its weaknesses
to meet a clinical performance goal. Humans are
highly adaptable and accurate at tasks like iden-
tifying malaria parasites, but they examine only a
limited sample size due to time and fatigue con-
straints. These limited sample sizes are typically
encoded in clinical protocols such as for how much
blood to examine for malaria quantitation, or how
many white blood cells (WBCs) to inventory for a
differential blood count. In contrast, machines of-
ten have lower accuracy at tasks such as identifying
malaria parasites, but they don’t fatigue and can po-
tentially examine a much larger sample. Examples of
ML systems with test time sample size much larger
than standard protocols are Das et al. (2022); Rees-
Channer et al. (2023); Torres et al. (2018). In the
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Reducing Poisson error

Torres study, the automated malaria diagnosis sys-
tem examined markedly different volumes of blood
at the two clinics, and had markedly better perfor-
mance when it examined more blood.

In this paper we examine the relationship between
Poisson error (i.e. the variation in counts of rare ob-
jects in a small sample), accuracy error (object classi-
fication error), and total error (deviation from the ex-
pected value in a very large sample). Limited sample
sizes encoded in clinical protocols mean that humans,
even with perfect classification accuracy, are subject
to often substantial Poisson error relative to the back-
ground ground truth (e.g. average parasites per µL
of blood). We study how an automated system can,
in order to offset imperfect classifier accuracy, exam-
ine a larger sample and thus reduce its Poisson error,
resulting in equal net error relative to a human fol-
lowing a clinical protocol. That is, machines can use
a particular strength (high data throughput) to offset
a weakness (classification inaccuracy) and thus match
the performance on a clinical task of a skilled human
who has high classification accuracy but lower data
throughput.

We emphasize that increasing test time sample size
does not affect a model’s object-level accuracy. But
at the patient level (i.e., the clinical task) object clas-
sification and Poisson statistics contribute distinct
forms of error which roughly sum to give total error.
So reducing Poisson error does enable a margin for
higher object classification error while maintaining
the same total error on the clinical task. In practice,
ML teams optimize classification accuracy as much
as possible. Then larger examined volume at test
time can compensate for not-quite-sufficient classifi-
cation accuracy in order to meet clinical performance
requirements.

We assume the clinicians have perfect (100%) ac-
curacy. Though not all field microscopy has perfect
accuracy, well-trained and equipped microscopists are
very, very skilled, and any ML system will typically
need to match the “best case” human performance.
In particular, absent rigorous studies regulatory agen-
cies will likely assume a best case human perfor-
mance. However, they are still subject to unavoid-
able Poisson error when a clinical protocol specifies
that they examine a relatively small amount of sub-
strate, e.g. 200 WBCs for a differential blood count,
or 0.0625 µL of blood for malaria diagnosis. In this
paper we describe how to calculate what increase in
examined substrate volume is required to offset im-
perfect ML accuracy, such that the ML system does

not exceed the total error allowed by current stan-
dards of care.

We address two widely-relevant use cases: (i) limits
of detection, (ii) quantitation accuracy. We illustrate
the calculation methods on specific clinical examples
of these use cases, namely (i) diagnosis of malaria and
(ii) quantitation of malaria parasites, on blood films.
We provide equations and step-by-step methods to
guide how to modify an operational parameter of an
ML system (i.e. “sample size examined”) to offset
imperfect object classification accuracy.

Our mathematical derivations necessarily assume
certain (well-principled) starting formulas for limit
of detection (LoD) and quantitation. However, if
the exact formulae described here might not apply
in the context of a particular clinical task, the prin-
ciple still holds: that total error on a clinical task
involving examination of tissue can be broken into
different error types, and weaker performance on the
algorithm accuracy axis can be offset with stronger
performance on the Poisson error axis. This paper
provides a template for modeling the clinically rele-
vant error function, which enables development teams
(hardware and software) to best allocate their efforts
to meet clinical performance requirements.

Our examples highlight the methods’ relevance to
parasitic diseases, and they have clear application in
low resource regions where microscopy is a central
tool. But the methods have utility whenever sample
sizes specified by protocols imply non-trivial Poisson
variability. “Parasite” can be replaced with “object
of interest” (e.g. abnormal cell in cancer biopsy, or
WBC in a differential WBC count). This paper is
relevant to teams developing ML systems that move
beyond the academic proof-of-concept and aspire to
deployment in the clinic.

The next two sections describe mathematics for (i)
diagnosis and LoD, and (ii) quantitation, in each case
illustrated with concrete medical use cases in which
some of the variables in the equations are known (e.g.
fixed by clinical protocols).

2. Diagnosis and limit of detection

Diagnosis of malaria WHO (2010, 2016d) and ne-
glected tropical diseases (e.g. schistosomiasis, lym-
phatic filariasis) WHO (2002, 2021) at the low par-
asitemias near LoD is an important case of rare ob-
ject detection, in which an examined sample might
contain only a few parasites and the exact number
present in the sample is subject to Poisson variabil-
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ity:

P (k events) =
λke−λ

k!
(1)

where k is an integer and λ is the expected number
of events in a given interval.
In our case, “events” are parasites, “interval” is

the volume of substrate (e.g. blood) examined, and
the “expected number” is the parasitemia (e.g. par-
asites per µL) scaled by the examined volume. For
large volumes and/or high parasitemias, this basically
matches the binomial distribution, and diagnosis is
not an issue (it does affect quantitation, as described
in Section 3). At small volumes and low parasitemias,
the Poisson distribution squeezes up against the y-
axis, giving a larger standard error (i.e. std dev
/ mean = σ(k)/µ(k)), and giving an asymmetrical
distribution in which k = 0 has nontrivial probabil-
ity. Python Van Rossum and Drake Jr (1995) code
to plot Poisson distributions, used for computational
sweeps, is given in Appendix A.2. This low para-
sitemia regime is relevant to diagnosis at LoD.

2.1. Example: Malaria

We assume that a human can perfectly classify ob-
jects in blood as a malaria parasite or artifact. Then,
since there are no false positive artifacts to contend
with, the LoD = N p/µL is the parasitemia at which
the examined sample volume consistently (e.g. 95%
of the time) contains at least one parasite .
Let n = number of parasites in the examined vol-

ume V ; cV = clinically-relevant volume (1 µL for
malaria), and N/cV be the parasitemia at LoD. Then
we require that

P (n ≥ 1 | V, N) ≥ 0.95 (2)

where the underlying distribution is Poisson.
The WHO guidelines for malaria microscopy WHO

(2016b) specify that V contain 500 WBCs, ≈ 0.0625
(i.e. 1/16th) µL using the standard approximation of
8000 WBCs/µL. Plugging in values for N , we find an
LoD of ≈50 p/µL (see Figure 2.1). We assume that
our ML system has imperfect object-level accuracy,
and follow the analysis in Delahunt et al. (2024). For
a given patient, let object sensitivity = s and false
positive rate f = FPs/cV . Then let S be the vector of
object-level sensitivities s over each patient and F be
the vector of FP rates f over each patient. We note
that f varies from patient to patient and consider
σ(F), the standard deviation of FP rates over the
population of patients. For simplicity we neglect the

variation in s between patients and use the mean µ(S)
(for more nuance on this, see Delahunt et al. (2024)).

We wish to calculate how large an examined vol-
ume V the ML system needs to examine, such that
it will reliably (e.g. 95% of the time) both identify
malaria-negative patients and also detect malaria-
positive patients at the LoD of N p/µL. To achieve
high patient-level specificity, we set a threshold T on
the number of suspected parasites detected by the
model, such that for most negative patients the sus-
pected parasite count will come in below threshold.
Assuming a Gaussian distribution, we can define T
as:

T =
(
µ(F) + 1.65σ(F)

) V

1 µL
(3)

where the scaling term gives us the number of FPs in
volume V . Then to achieve high sensitivity on sam-
ples with parasitemia at the LoD N p/µL we need
the the number of suspected parasites (the sum of
true positives TP and false positives FP) to equal or
exceed this threshold. This must hold for most pa-
tients. So it must hold for a patient with a relatively
“clean” sample, i.e. with very few FPs (the bottom
end of the FP rate distribution):

#FPs =
(
µ(F)− 1.65σ(F)

) V

1 µL
(4)

Since the suspected parasite count in V equals
#TP + #FP , we need

#TP > 3.3σ(F)
V

1 µL
(5)

Given sensitivity µ(S), we need at least #TP/µ(S)
true parasites present in the examined volume to find
sufficient TPs to cross the threshold T (as required
by Equation 5). Note that the number of TPs we
need to have present in V depends on V , because as
V increases so does the FP count spread and thus the
threshold T . Let x = this required number of TPs.

To find the examined volume V needed to meet
this spec, we can computationally sweep values of V
and plug {V, x(V ), N} into the Poisson distribution
to see which V gives P (k ≤ x) < 0.05 (see Python
code in Appendix A.2).

For example, if our model has µ(S) = 0.85 and
σ(F) = 10/µL, then attaining LoD = 50 p/µL is not
feasible. However, an LoD = 70 p/µL can be attained
by examining V = 0.2 µL (see Figure 2.1). This
volume is larger than specified by WHO protocol, but
is attainable for automated hardware.
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Figure 1: Poisson distributions showing number of parasites actually found in 500 WBCs’ worth of
blood, given various true parasitemias. The LoD is ≈50 p/µL.

Figure 2: Estimating the volume required to match an LoD = 70, given µ(S) = 0.85 and σ(F) = 10/µL.
The required number of TPs (detected by the algorithm) for each volume are shown as red dots. For
V = 0.2 µL, 95% of cases will exceed the required number.
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3. Quantitation

Quantitation is sometimes a clinically relevant task.
For example, to monitor drug-resistant malaria
strains, sentinel sites dose P. falciparum-positive pa-
tients with a drug, then create and quantitate blood
films every 4 to 6 hours, to see if the strain is de-
veloping resistance to the drug Ashley et al. (2014);
White (2011); WHO (2016a). This use case involves
a huge work burden for microscopists and has relaxed
runtime requirements. It is thus an ideal target for
automated systems.

Another example concerns mass drug administra-
tion of ivermectin to control onchocerciasis (river
blindness, a serious Neglected Tropical Disease). In
regions where the filaria Loa loa is co-endemic, pa-
tients with high Loa loa microfilaria burdens (25,000
- 30,000 mf/mL of blood) risk catastrophic side ef-
fects from ivermectin. Thus accurate quantitation
at the 25,000 mf/mL cutoff is clinically vital for the
“Test and Not Treat” protocol Gardon et al. (1997);
D’Ambrosio et al. (2015). The D’Ambrosio paper dis-
cusses the likely impact of sample size on diagnostic
accuracy.

Poisson error is introduced into quantitation,
even at high parasitemias, when a relatively small
sample is examined. Let P(p, V ) = the Poisson
distribution for parasitemia p p/cV and examined
volume V . Then the standard error caused by
Poisson variability at true parasitemia p is

σ(P(p, V ))

µ(P(p, V ))
=

σ(P(p, V ))

p V
cV

=

√
1

p

cV

V
(6)

since for a Poisson distribution the variance equals
the mean. The denominator is the expected num-
ber of parasites in V given parasitemia p. This un-
avoidable error is remarkably high for the small VPR

specified by some protocols.

3.1. Example: quantitation of malaria
parasites

To quantitate blood films for malaria, WHO research
protocols specify examining 500 WBCS (0.0625 µL)
if p < 16, 000p/µL, or 2000 red blood cells (RBCs),
(≈ 0.0004 µL) if p > 16, 000p/µL WHO (2016a). We
wish to compare the errors in the algorithm quanti-
tation to this Poisson error on VPR. Following Meha-
nian et al. (2017), we define our formula for estimated

parasitemia in a particular sample as

p̂ =
(tp+ fp)− µ(F)VE

cV

µ(S)

cV

VE
(7)

where tp + fp = the number of suspect parasites in
examined volume V (both true parasites and misclas-
sified distractors), VE is the estimate (e.g. found by
counting WBCs or RBCs) of V , and other terms are
as defined previously. We let VE = the vector of VE

over the population, in the useful case (below) that
all examined volumes are the same V .

To motivate Equation 7, we note that in the first
part of the equation (assuming Gaussian distribu-
tions of F and S) the numerator is the Maximum
Likelihood Estimate (MLE) for the number of true
parasites detected by the algorithm in VE , and the
denominator is the MLE of the algorithm’s sensitivity
at parasite detection. So it is the most likely estimate
of true parasites actually in VE .

Equation 7 says: Count up the suspects; then sub-
tract the expected number of FPs in VE , to get an
estimate of detected parasites tp; divide this by our
expected sensitivity µ(S) to get an estimate of the
actual number of parasites that were present; then
normalize by estimated volume to get p̂/cV .
This estimate contains three sources of error rel-

ative to true parasitemia p: classification (of both
parasites and distractors), volume estimation, and
Poisson variability. These all vary over the patient
population. We seek a formula for the standard de-
viation of the combined error sigma(pE) from these
three sources.

Let the parasitemia = p/µL, and pV = the actual
number of parasites in V , so pV has a Poisson distri-
bution with mean p V

cV .
In what follows, ∆ denotes the difference of the sam-
ple’s variable from the mean population value, i.e.
S = µ(S)+∆S, F = µ(F)+∆S, VE = V +∆V , and
pV = p V

cV +∆P(p, V ) where P(p, V ) denotes Poisson
variability. So

tp = pV (µ(S) + ∆S)

= (p
V

cV
+∆P(p, V ))(µ(S) + ∆S)

(8)

fp = (µ(F) +∆F )
V

cV
(9)

To get a formula for the standard error of quantita-

tion σ(pE)
p , we substitute these terms into Equation 7,

apply some algebra, convert into standard deviations
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over the population, then divide by p. The full deriva-
tion is in Appendix A.1:

σ(pE)

p
= VSE +

σ(S)

µ(S)
(1 + VSE) +(

1 +
σ(S)

µ(S)

)√
1

p

cV

V
+

VSE

p

µ(F)

µ(S)
+

σ(F)

µ(S)

(1 + VSE)

p
(10)

where VSE = σ(VE)
V is a constant (see Appendix A.1

for details).

The crucial thing to note about Equation 10
is that the values on the RHS are known:
µ(S), σ(S), µ(F), σ(F), and VSE are readily-
calculated performance statistics of the algorithm
(for full details see Delahunt et al. (2024)). So
Equation 10 is a simple function of {p, V }.

Equation 10 has the following structure:
(i) the first 2 terms involve only sensitivity and vol-

ume estimation, and are constant for all {p, V };
(ii) only the third term involves Poisson variability,

and it decreases with
√
pV ; and

(iii) only the last 2 terms involve FP rates, and they
decrease with p.

If Poisson and volume estimation error are ignored
and only classification error is considered, i.e. when
σ(P) = VSE = 0, then most terms disappear and it
becomes the formula for the standard error of quan-
titation due to classifier inaccuracy as derived in De-
lahunt et al. (2019):

σ(pE)

p
=

σ(S)

µ(S)
+

σ(F)

µ(S)

1

p
(11)

Equation 11 is useful in optimizing the classifier algo-
rithm, because it isolates the algorithm’s error con-
tributions. But to model quantitation error fully, for
example when co-ordinating with a hardware team
to determine the required blood volume to examine,
σ(P) and VSE should be included for two reasons:
They are likely to be among the largest contributors
to total quantitation error; and σ(P) is a piece that
is under control of the hardware (since it depends on
examined volume).

The contributions of the various terms in Equa-
tion 10 are plotted in Figure 3.1. For most para-
sitemias p, the biggest non-Poisson contributions are

from σ(S)
µ(S) and VSE , while

σ(F)
µ(S) , (i.e. the biggest of

the terms involving σ(F)) dominates at low p. This

plot is a useful tool to highlight where algorithm im-
provements are most needed.

It also allows us to answer our original question:
How much extra volume must we examine to reduce
Poisson error enough to offset algorithm errors, such
that the automated system’s total error matches the
Poisson error of a perfect clinician examining a pro-
tocol volume VPR?

We can answer this by first plotting the curve
1
pσ(P(p, VPR)) over values of p, then plotting curves
1
pσ(pE)(p, V ) from Equation 10 for a set of vol-
umes V . This is illustrated in Figure 4.1 for a
(pretty strong) hypothetical algorithm with µ(S) =
0.95, σ(S) = 0.03, µ(F) = 50, σ(F) = 10, and VSE =
0.02. We find that when applied to VPR the algo-
rithm has far higher standard error than a perfect
human following protocol, but examining 0.4 µL suf-
fices to closely match the human’s error at most par-
asitemias, especially if, as is likely, the human volume
estimate also has error (see 3.3 for details). A larger
examined blood volume can be attained in two ways:
(i) by examining more RBCs on thin film (as in Noul
(2023)); or (ii) by staying on thick films (as in Meha-
nian et al. (2017); Das et al. (2022); Rees-Channer
et al. (2023)) since machines do not need to switch to
thin film at 16,000 p/µL, giving the large advantage
shown in Figure 4.1.

3.2. Example: differential white blood cell
counts

A common diagnostic is a differential WBC count
Doig and Thompson (2017); Gulati et al. (2013);
Brihi and Pathak (2024), either 5-part (where each
WBC type is inventoried) or 3-part (where only lym-
phocytes, granulocytes, and monocytes are inven-
toried by size). Relative numbers and proportions
of WBC types can give insight into, for example,
whether an infection is bacterial, viral, fungal, or par-
asitic. When microscopy is used (e.g. in low resource
settings) this is a time-consuming task, and thus clin-
ical protocols specify examining only 200 (sometimes
100) WBCs. Since some WBC types represent only
1% of the total count, this protocol implies high Pois-
son error. Given knowledge of an ML system’s WBC
classification accuracy (e.g. Fan et al. (2022)), we can
calculate how many WBCs it must examine to attain
the same total error as a perfect microscopist exam-
ining 200 WBCs. To do this, we apply Equation 10
to each WBC type over the expected range of per-
centages (the analogue of parasitemia), and identify
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Figure 3: The size of various terms in the standard error of quantitation, Equation 10, vs. parasitemia.
At low p errors due to Poisson and σ(F) dominate, while at high p errors due to σ(S) and VSE dominate.

Figure 4: Combined standard error of quantitation vs. true parasitemia, for: (In RED) Humans with
perfect accuracy, one without and one with volume estimation error, examining protocol volumes; (In BLUE)
An imperfect algorithm with performance per the text, at various examined volumes V . Larger V compen-
sates for its classification and volume errors.
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the weakest link, i.e., the cell type that requires the
largest sample size to make its total error match that
of the microscopist following standard protocol. All
terms involving VSE in Equation 10 zero out, since
the number of total WBCs inventoried is automati-
cally exact.

3.3. Errors in estimating examined volume

As noted in Delahunt et al. (2024), another source
of quantitation error is error in estimating the vol-
ume examined. According to WHO protocols, on
thick films blood volume is estimated by counting
WBCs and using the approximation 8000 WBCs/µL
WHO (2016b) (6000/µL in Peru Ministerio de Salud
(2003)). It is estimated on thin films by examin-
ing microscope fields-of-view, ballparking RBC count
per field-of-view, then using the approximation 5e6
RBCs/µL WHO (2016c). In research situations a
grid system is sometimes used, where 5 µL of blood
is evenly spread across a grid of fixed size, and volume
is estimated by area WHO (2016a).
Two details of protocol acknowledge an impreci-

sion in human quantitations for malaria. These de-
tails may reflect an expectation of errors in parasite
counting and volume estimation in addition to known
Poisson error: First, when possible two or more man-
ual quantitations are averagedWWARN (2023). This
carries high operational cost however, and is not typ-
ical for diagnostic settings. Second, the WHO profi-
ciency standards define someone whose quantitations
are within 25% of ground truth at least half the time
on a defined set of 15 blood films as having “Level 1”
proficiency WHO (2016d).
In the WBC/RBC counting cases, machines have

a substantial advantage. Although expert humans
are extremely skilled, one can reasonably expect non-
trivial error when manually counting hundreds of cells
while moving through microscope fields of view and
concurrently tallying parasite counts, or when de-
pending on bulk estimates of RBCs per field without
careful counting. We are not aware of any studies of
human counting error in this context, so we left it
out of our analysis above. However, perfect human
volume estimation is likely an unrealistic assumption.

4. Discussion

To deploy into clinical settings, an ML system’s per-
formance must match current standards of care, typ-
ically a challenging requirement. In this paper we

have described how standard protocols for human mi-
croscopy assessment specify, by necessity, relatively
small sample sizes and thus have high levels of un-
avoidable Poisson variability.

While trained humans are extraordinarily strong
and adaptable object classifiers, they are still fully
subject to this Poisson error. Automated ML sys-
tems may struggle to attain the same object classi-
fication accuracy as trained humans, but they excel
on other axes of performance. In particular, the clin-
ical deployment of a diagnostic algorithm typically
requires, as part of the total system, an automated
data acquisition device, e.g. a slide scanner, whose
role in the system must also optimized. If the clinical
use case and the deployed system allow for increas-
ing the examined sample size, this opens the possi-
bility to reduce the Poisson error associated with the
automated system, offsetting an algorithm’s higher
classification error.

We have also described mathematical methods to
analyze the relationship between Poisson error, al-
gorithm error, and total error. These methods can
inform the principled use of increased sample size to
offset algorithm error and thus achieve performance
equivalent to a perfectly accurate human on a clini-
cal task. This approach enables development teams
to best allocate effort as to where to reduce error.

If the medical use case is not sufficiently similar to
the “count objects in the sample” problem, our paper
offers perspective/approach rather than methodology
(since the equations will not directly apply). Medi-
cal use cases are too varied to admit of a general
solution. Sometimes the given equations will apply
(e.g. the Diagnosis equations for histopathology to
identify and tally aberrant cells in a tissue sample).
If they do not apply, then the ML team may need
to derive their own equations or heuristic code. For
example, the quantitation equations apply directly
to differential blood cell counts at a basic level (i.e.,
quantitating each cell type), but a medical diagnosis
is based on ratios of these counts, a further layer of
analysis would be ideal. We also note that absent be-
spoke equations, a legitimate option is to simply try
to maximize the volume examined by the hardware,
knowing that this will likely help the system achieve
clinical performance goals.

A second use of the quantitation equations is to
guide algorithm development by highlighting which
forms of object-level error are most productive to re-
duce. For example, the equations might show that
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due to low parasitemia ranges being targeted, an al-
gorithm’s FP error is the limiting factor.

We note that the ability to examine a larger sample
is subject to technical, cost, and use case constraints.
For example, scanning more sample takes more time.
In the drug resistance monitoring use case, time-to-
result is relaxed and allows more scanning time; while
point-of-care settings require fast diagnosis, limiting
scanning time and thus examined volume. Financial
cost may also constrain increases to sample size. For
example, Noul (2023) has a one-use cartridge to stain
a thin film, so increasing examined volume beyond
one cartridge’s worth doubles the cost of consum-
ables; while a system scanning standard thick films
can examine extra volume at no extra cost. In an-
other example, the one-use capillary in D’Ambrosio
et al. (2015) has a fixed blood volume. This suffices
for the Loa loa “test and not treat” use case but per-
haps not for diagnosing the much lower parasitemias
in lymphatic filariasis, and increasing volume would
require two capillaries per patient, doubling consum-
able costs.

The ability to drive down Poisson error offers
teams that are optimizing automated ML systems
for deployment a separate, valuable axis for improve-
ment, an axis which humans cannot realistically
leverage. Improvement on this axis, involving
both hardware and software, can offset lower ML
performance on tasks at which humans excel, such
as object classification detached from the constraints
of clinical protocols, enabling ML systems to meet
the rigorous clinical performance standards of care
required for deployment.
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Appendix A.

A.1. Derivation of quantitation error

Following Mehanian et al. (2017), suppose our for-
mula for estimated parasitemia, for a sample with
true parasitemia p/cV , is:

p̂ =
(tp+ fp)− µ(F)VE

cV

µ(S)

cV

VE
(12)

where tp + fp = the number of suspect parasites in
examined volume V (both true parasites and misclas-
sified distractors),
VE is the estimate of V (e.g. found by counting
WBCs or RBCs),
and other terms are as defined previously.
This formula says: we count the suspects then sub-
tract the number of FPs which we expect in VE , to
leave our estimate of detected parasites; we divide
this by our estimate of sensitivity µ(S) to get an es-
timate of the actual number of parasites that were
present; we then normalize by estimated volume to
get p̂/cV .

This estimate contains three sources of error rela-
tive to true parasitemia p: classification (of both par-
asites and distractors), volume estimation, and Pois-
son variability. Each of these varies by sample (a
particular patient’s blood film). We will substitute
these errors into Equation 7:

Let PV = the true number of parasites in V , so PV

has a Poisson distribution with mean p V
cV .

In what follows, ∆ denotes the deviation of the sam-
ple’s variable from the mean population value, i.e.
S = µ(S)+∆S, F = µ(F)+∆S, VE = V +∆V , and
PV = p V

cV +∆P(p, V ) where P(p, V ) denotes Poisson
variability. So

tp = PV (µ(S) + ∆S)

= (p
V

cV
+∆P(p, V ))(µ(S) + ∆S)

(13)

fp = (µ(F) + ∆F )
V

cV
(14)

Then substituting Equations 13,14 into Equation 12
gives the following quantitation error for the sample:

∆p = p̂− p = −p + p̂ = −p +[(
p
V

cV
+∆P(p, V )

)
(µ(S) + ∆S)+

(µ(F) + ∆F )
V

cV
− µ(F)

VE

cV

]
1

µ(S)

cV

VE

(15)
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Distribute everything:

∆p = −p+(
p
V

cV

µ(S)

µ(S)

cV

VE

)
+

(
∆P(p, V )

µ(S)

µ(S)

cV

VE

)
+(

p
V

cV

∆S

µ(S)

cV

VE

)
+

(
∆P(p, V )

∆S

µ(S)

cV

VE

)
+(

µ(F)

µ(S)

V

cV

cV

VE

)
+

(
∆F

µ(S)

V

cV

cV

VE

)
− µ(F)

µ(S)

VE

cV

cV

VE

(16)
Cancel terms, and substitute V = VE −∆V :

∆p = −p+

(
p
VE −∆V

VE

)
+

(
∆P(p, V )

cV

VE

)
+(

p
VE −∆V

VE

∆S

µ(S)

)
+

(
∆P(p, V )

∆S

µ(S)

cV

VE

)
+(

µ(F)

µ(S)

VE −∆V

VE

)
+

(
∆F

µ(S)

VE −∆V

VE

)
− µ(F)

µ(S)
(17)

Continue simplifying:

∆p = −p+ p− p
∆V

VE
+∆P(p, V )

cV

VE
+

p
∆S

µ(S)
− p

∆V

VE

∆S

µ(S)
+ ∆P(p, V )

∆S

µ(S)

cV

VE
+

µ(F)

µ(S)
− µ(F)

µ(S)

∆V

VE
+

∆F

µ(S)
− ∆F

µ(S)

∆V

VE
− µ(F)

µ(S)
(18)

To assess standard deviation of the quantitation
error, σ(∆p̂), over the population, we convert the ∆
terms to std devs σ( ).

Note that in the interaction terms, ∆V,∆P,∆S,
and ∆F are independent (relative to the other inter-
action term) random variables with zero mean (∆P
has very close to zero mean at parasitemias relevant
for quantitation, though this does not hold for the
very low parasitemias at LoD). So

σ(∆V∆S) = σ(∆V )σ(∆S), etc. (19)

Following the definitions in Section 2.1, σ(∆S) =
σ(S) and σ(∆S) = σ(S). We denote the vector of
∆V s over the population as VE and the vector of
parasitemia estimate errors as pE .
To facilitate computation later, we make an ap-

proximation when converting to std devs at popula-
tion level:

σ(∆V)

VE
≈ σ(∆V)

V
(20)

if the volume estimator (e.g. WBC or RBC counter)
is decent (e.g. if standard error = 0.1 they differ by

a factor < 1.05). Then:

σ(pE) =

p
σ(VE)

V
+ σ(P(p, V ))

cV

V
+ p

σ(S)

µ(S)
+

p
σ(VE)

V

σ(S)

µ(S)
+ σ(P(p, V ))

σ(S)

µ(S)

cV

V
+

µ(F)

µ(S)

σ(VE)

V
+

σ(F)

µ(S)
+

σ(F)

µ(S)

σ(VE)

V

(21)

To further simplify, we note that σ(VE)
V is most

likely constant at usable V : this is the standard error
of the volume estimator, and the error in the count
of WBCs or RBCs will likely scale with the total
true number, e.g. if σ(VE) = 20 for V = 500, then

σ(VE) = 40 for V = 1000. Letting σ(VE)
V = VSE we

have the cleaner formula

σ(pE) =

pVSE + σ(P(p, V ))
cV

V
+ p

σ(S)

µ(S)
+

pVSE
σ(S)

µ(S)
+ σ(P(p, V ))

σ(S)

µ(S)

cV

V
+

µ(F)

µ(S)
VSE +

σ(F)

µ(S)
+

σ(F)

µ(S)
VSE

(22)

Then the standard error of quantitation is

σ(pE)

p
=

VSE +
σ(P(p, V ))

p

cV

V
+

σ(S)

µ(S)
+

VSE
σ(S)

µ(S)
+

σ(P(p, V ))

p

cV

V

σ(S)

µ(S)
+

VSE

p

µ(F)

µ(S)
+

1

p

σ(F)

µ(S)
+

VSE

p

σ(F)

µ(S)

(23)

Grouping and reordering terms gives

σ(pE)

p
= VSE +

σ(S)

µ(S)
(1 + VSE) +

(
1 +

σ(S)

µ(S)

)√
1

p

cV

V
+

VSE

p

µ(F)

µ(S)
+

σ(F)

µ(S)

(1 + VSE)

p
(24)

where we used the fact that for a Poisson distribution

the variance equals the mean, so σ(P(p, V )) =
√
p V
cV .

This is Equation 10 in the main text.
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A.2. Python code to plot Poisson distributions

import numpy as np
from matplotlib import pyplot as plt
from scipy.stats import poisson

pPerUL = 100
vols = np.array((0.01, 0.02, 0.05, 0.1))
numWbcs = vols * 8000
numRbcs = vols * 5000
mu = pPerUL * vols
numDraws = 10000
k = np.arange(0, 20)

probK = np.zeros((len(k), len(vols)))
cumProbK = np.zeros((len(k), len(vols)))
stdProbK = np.zeros(len(vols))

for i in range(len(vols)):
for j in range(len(k)):

probK[j, i] = poisson.pmf(k = k[j], mu=mu[i])
cumProbK[j,i] = poisson.cdf(k = k[j], mu=mu[i])
stdProbK[i] = np.std(poisson.rvs(mu = mu[i],size=numDraws ))

stdError = stdProbK / mu

# plot distributions:
print(’vols = ’ + str(vols))
print(’std error = ’ + str(np.round(stdError,2)))

tickKwargs = ’fontweight’:’bold’,’fontsize’:12
legendKwargs = ’fontsize’:12

plt.figure()
plt.xlabel(’# of parasites in examined volume (true P = 100 p/uL)’,
fontweight=’bold’, fontsize=12)
plt.ylabel(’Probability’, fontweight=’bold’, fontsize=12)
for i in range(len(vols)):

plt.plot(k, probK[:, i], linewidth=2, label = str(vols[i]) + ’ uL (’ +
str(int(numWbcs[i])) + ’ wbcs or ’ + str(int(numRbcs[i])) + ’k rbcs)’)
plt.legend(**legendKwargs)
plt.xticks(range(0,21,2), **tickKwargs)
plt.yticks(np.arange(0, 0.5, 0.1), **tickKwargs)

A.3. Python code to plot standard error of quantitation

import os
import numpy as np
from matplotlib import pyplot as plt, rc

# parasitemias:
p = list(range(100, 1001, 50)) + list(range(1000, 10000, 500)) +
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list(range(10000, 150000, 2000))
p = np.array(p)
# Volumes examined:
Vrbc = 0.0004 # 2000 RBCs if > 16k p/uL. TDR
Vwbc = 0.0625 # 500 WBCs if p < 16k/uL. TDR.
VwbcWho = 0.025 # 200 WBCs if p > 400, < 16k
Vauto = 0.125 # 1000 WBCs
Vexam = np.array([0.0625, 0.1, 0.25, 0.5]) # volume examined by algorithm

# Algorithm performance statistics:
muS = 0.95
sigmaS = 0.03
muF = 50
sigmaF = 10
Vse = 0.02 # ie std dev = 2% of total count
VseHuman = 0.02

# Various fixed Vs:
PoisVrbc = np.sqrt(1 / (p * Vrbc))
PoisVwbc = np.sqrt(1 / (p * Vwbc))
PoisVauto = np.sqrt(1 / (p * Vauto))

# Populate for range of Vs:
PoisVexam = np.zeros((len(Vexam), len(p)))
PoisAndSigSTerm = np.zeros((len(Vexam), len(p)))
muFTerm = np.zeros((len(Vexam), len(p)))
sigmaFTerm = np.zeros((len(Vexam), len(p)))

for i in range(len(Vexam)):
PoisVexam[i, :] = np.sqrt(1 / (p * Vexam[i]))
PoisAndSigSTerm[i, :] = (sigmaS / muS) * np.sqrt(1 / (p * Vexam[i]))
muFTerm[i, :] = (Vse / p) * (muF / muS)
sigmaFTerm[i, :] = sigmaF / muS *(1 + Vse) / p

# Constant:
sigmaSConstantTerm = (sigmaS / muS) * (1 + Vse)

totalStdError = np.zeros((len(Vexam), len(p)))
for i in range(len(Vexam)):

totalStdError[i, :] = Vse + sigmaSConstantTerm +
PoisVexam[i,:] + PoisAndSigSTerm[i, :] + muFTerm[i, :] + sigmaFTerm[i, :]

-----------------------------------------
#%% Plot Poisson error (only) for select V’s including protocols:
plt.figure()
rc(’font’,weight=’bold’)
# Vwbc:
inds = np.where(p < 16001)[0]
plt.semilogx(p[inds], PoisVwbc[inds], color=’r’, label=’Protocol, thick, 500
WBCs’)
# Vrbc:
inds = np.where(p >= 16000)[0]
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plt.semilogx(p[inds], PoisVrbc[inds], linestyle=’--’, color=’r’,
label=’Protocol, thin, 2000 RBCs’)
# Autoscope:
plt.semilogx(p, PoisVauto, ’b’, label=’Machine, 1000 WBCs’)

plt.legend()
plt.xlabel(’parasites / uL’, fontweight=’bold’, fontsize=12)
plt.ylabel(’std error’, fontweight=’bold’, fontsize=12)

-----------------------------------------
#%% Plot some of the important terms for one Vexam:
ind = np.where(Vexam == 0.1)[0][0]
plt.figure()
rc(’font’, weight=’bold’)

plt.semilogx(p, sigmaSConstantTerm *np.ones(len(p)),’m’,
label=’sigmaS / muS term’)
plt.semilogx(p, Vse *np.ones(len(p)),’k’, label=’Vse term’)
plt.semilogx(p,PoisAndSigSTerm[ind,:],’b’, label=’Poisson * (sigmaS / muS)
term’)
plt.semilogx(p,PoisVexam[ind,:],’c’, label=’Poisson only term’)
plt.semilogx(p,sigmaFTerm[ind,:],’g’, label=’sigmaF / muS term’)
plt.semilogx(p,muFTerm[ind,:],’r’, label=’muF / muS term’)

plt.legend()
plt.xlabel(’parasites / uL’, fontweight=’bold’, fontsize=12)
plt.ylabel(’std error’, fontweight=’bold’, fontsize=12)
plt.title(’Components of std error equation for: ’ + ’V = ’ +
str(Vexam[ind]) + ’, Vse = ’ + str(Vse) +
’muS = ’ + str(muS) + ’, sigmaS = ’ + str(sigmaS) + ’, muF = ’ + str(muF) + ’,
sigmaF = ’ + str(sigmaF), fontweight=’bold’)

-----------------------------------------
#%% Plot Poisson error for protocol and total error for selection of Vs:
plt.figure()
rc(’font’,weight=’bold’)

# Vwbc:
inds = np.where(p < 16001)[0]
plt.semilogx(p[inds], PoisVwbc[inds], color=’r’,
label=’Protocol, thick, ’ + str(Vwbc) + ’ uL’)
inds = np.where(p < 16001)[0]
# Vrbc:
inds = np.where(p >= 16000)[0]
plt.semilogx(p[inds], PoisVrbc[inds], linestyle=’:’, color=’r’,
label=’Protocol, thin, ’ + str(Vrbc) + ’ uL’)
# Vwbc + some volume estimation error:
inds = np.where(p < 16001)[0]
plt.semilogx(p[inds], PoisVwbc[inds] + VseHuman, color=’r’, linestyle=’--’,
label=’Protocol, thick, ’ + str(Vwbc) + ’ uL plus se’)
# Machine
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for i in range(len(PoisVexam)):
plt.semilogx(p, totalStdError[i], ’b’, label=str(Vexam[i]) + ’ uL’)

# Rerun Vwbc to make them foreground:
inds = np.where(p < 16001)[0]
plt.semilogx(p[inds], PoisVwbc[inds], color=’r’)
plt.semilogx(p[inds], PoisVwbc[inds] + VseHuman, color=’r’, linestyle=’--’)
plt.legend()
plt.xlabel(’parasites / uL’, fontweight=’bold’, fontsize=12)
plt.ylabel(’std error’, fontweight=’bold’, fontsize=12)
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