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Bio-mimetic feature generators improve ML accuracy on limited data
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Introduction Results for MothNet features on vectorized MNIST Results on Omniglot
Informative features are central to ML performance, more so Downsampled, vectorized MNIST images give an 85-feature, 10-class, non-spatial dataset. Small training sets (1 to 100 digits Omniglot I1s a character dataset with 20 samples per class.
when training data is limited. Biological neural networks excel per class, << 6000) constrain baseline ML accuracy. Given a training set S, experiments ran as follows: On vectorized Omniglot, MothNet features consistently
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at fast learning, and extract highly informative features. - . - - - - boosted ML accuracy. Relative gains in accuracy were 5%
| 1. Baseline models. Neural Nets (NNs), SVM, and Nearest Nel.ghbors Wgre tralneq on S, usmg p|>_<el valu_es as fegtures. | 20% for NNs and Near Neighbors, and over 50% for SVMs
The Insect olfa_ctory ne_twork learns 2. Models Wlth.add_ed I\(Ic_)thNet features: (a) MothNet was trained, by time-evolving stochastic dlfferent_lal equations, on p!xel (Fig 4A). Relative reduction in error was 20% to 60% (Fig 4B).
new odors rapidly. It Includes four values of S. This diversified the responses of its 10 Readout Neurons. (b) The ML models were retrained on S, using pixel ot
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We deployed MothNet, a computational model of this . J - R T T 2
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classifiers, on vectorized MNIST and Omniglot data sets. ~ 60 - P ‘I | " e T T I L
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MothNet-generated features significantly improved ML taatures increased ML 3 - y c ; Figure 4: Relative change in test set accuracy due to MothNet
performance vs baseline: relative reduction In test set error accuracy in all cases s Tr"ﬁ Edn_ L ) . features, vs baseline accuracy. A: accuracy gains. B: error reductions.
averaged 20% to 60%. MothNet features also strongly out- . 4 . § 40 I Y = i R
performed comparison feature generators including PCA (Fig. 2). Gains were & f[ﬂ = “ Cu et C | )

’ significant  for most LY 5 . e o onciusion
PLS, and NNs. . | T 20| . . . . . -
cases with [S] > 3 : oo Biological brains have strong feature extraction abilities. We

This bio-mimetic architecture encoded, and made samples per class (p < o | - = I el deployed a bio-mimetic neural network, MothNet, as a feature
accessible, new class-relevant information that was otherwise 0.05). Relative error o : T T o generator to aid standard ML classifiers.
ignored by the ML methods alone. These results highlight the reduction was 20% to o Baseline ML accuracy (%) MothNet tad  feat anificantly i 4 ML
potential value of bio-inspired NNs as feature generators In 60% (Fig 2 inset). % se = z othNet-generate calures - sighiticantly - ncreased:
the ML context | . % L~ oo o, o, P . classifier accuracy on vectorized MNIST and Omniglot.

| The trained MothNet " 5 3 & 7 10 15 20 30 40 50 70 100 MothNet outperformed comparison feature generators such as
: encoded class-relevant T ——— PCA, PLS, NNs, and pre-training NN weights.
Neural Architecture l/naflcijr;nsat:ggolrgdthg plt);leel Figure 2: Trained accuracy of ML methods, with and without MothNet features, vs |S|. Baseline ML accuracies MothNet includes four key biological motifs: (i) Competitive
. y are small circles, accurzflc:les Wlth I\/Iothl_\let are larger circles, vertical bars show increase In accuracy (_:Iue to inhibition, (i) a high-dimensional, sparsely-firing layer, (iii)
Competitive ~50X  sparse 200 ML methods alone, and MothNet features. Inset. Relative reduction In error as percentage. MothNet-generated features significantly ter| fivit d (iv) Hebbi dat
INPULS == Sinnibition  ~ (5to15%)  Readouts made it usable. iImproved ML accuracy. 13 runs per datum. sparse inter-layer connectivity, and (iv) Hebbian updates.
' These architectural elements extracted and encoded strong
C()mpanson to other methods Table 1: SVM, mean raw gains due to feature generators (%). class-relevant information not accessed by the ML methods
We compared MothNet to other feature generators: PCA poan WA T or T tostos o o903 o8 Lil 0z alone. The ML methods were then able to use this new,
- ’ PCA NA |12.2|-04| -14 | 03] 02 |02 ]-09| 03| -08|-14|-0.5 n " . - .
PLS (partial least squares), NNs, and pre-training NN weights "3 NA | U4 | 42 )35 | 15| 02|26 | 4 |54 53| 5155 orthogonal” class structure to significantly improve accuracy.
on similar data. Features were generated as follows: for PCA ey el il iyt [yl PRl il e colmol aolsal o Our results indicate that bio-mimetic networks may hold value
and PLS, projection onto first 10 modes of S; for NNs, 10 as feature generators in the ML context.
readouts of an NN trained on S. Table 2: Nearest Neighbor, raw gains due to feature generators(%).
F Gen N=1 2 3 5 § 10 | 15 | 20 | 30 00 70 | 100
Octopamine ———1 Inhibitory MothNet features substantially out-performed the comparison  Pca 67 | 07 | 06 | 1.4 | 12 |12] 15| 1 |1.3] 00 |09 | 15 References
SHIEbation Plastic (Hebbian) feature generators Tables 1 - 3 compare the mean raw gains PLS NA | 14 | 06 | 16 | 21 |15 1.1 19|12 04 | 09 |-0.1 M%r(gir?télz eégilézﬁc'gh%gffrobiology of insect olfaction: Sensory processing in a comparative
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| | . | in accuracy due to each of the feature generators, for each MothNet | 13.6 | 13.9 | 14.9 16?9 115110 106110 156! 66|61 4.7 Lag?:ig/%eetf(l)l%:sI?C%rr?\%indllce)gel concept learning through probabilistic program induction.
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N | slayel LU _ _ I ST _ _ _ | _ Table 3: Neural Net, raw gains due to feature generators (%). ' RS, i .
forward with sparse connectivity into a high-dimensional (~4000 unlts) This may be due to the biological motifs in MothNet's FGen | N=1| 21 3 | 5 = 110 | 15 120130 | 50 | 70 | 100 Dec!%q?mnittgdBaa}ftgt.za‘}inl,nzs'(()eféCyborgs' Slo-mimetc feature generators improve ML accuracy
but sparsely-active layer (Mushroom Body). The only plastic architecture, and to the Hebbian update method. For small |S] PCA 57 1021081 12 1261 17 1 03 131031 02 | 03 02 Matlab codebase: github/charlesDelahunt/PuttingABugInML
connections in the system are into and out of this sparse layer. This h | I MothNet t fract "orth "ol | PLS NA |02|59] 10 | 15| 28 | 0212|033 1.6 | L5 | 1.9 Python codebase for MothNet: github/meccal.eccaHi/pymoth, by Adam P. Jones
|ayer feeds-forward to readout units (RNS). Leaming causes RN _ €se may a O_W O € O extrac orthogona Class preTrain 15 42| 58 | -3.1 [-1.1| 0.2 1.3 |15 |-34 ] -04 | -4.7 | -1.1 Our thanks to Blake Richards, who suggested these experiments.
responses to the various classes to diversify. iInformation, relative to feature extractors based on L, norms. MothNet | 4 |17 | 15 |13.1| 13 |11.3 | 10.8 9.0 | 9.7 | 85| 7.1 | 6.4 httos://charlesdelahunt.github.io delahunt@uw.edu neurlPS 2019






