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ABSTRACT2

The insect olfactory system, which includes the antennal lobe (AL), mushroom body (MB), and3
ancillary structures, is a relatively simple neural system capable of learning. Its structural features,4
which are widespread in biological neural systems, process olfactory stimuli through a cascade5
of networks where large dimension shifts occur from stage to stage and where sparsity and6
randomness play a critical role in coding. Learning is partly enabled by a neuromodulatory reward7
mechanism of octopamine stimulation of the AL, whose increased activity induces synaptic weight8
updates in the MB through Hebbian plasticity. Enforced sparsity in the MB focuses Hebbian9
growth on neurons that are the most important for the representation of the learned odor. Based10
upon current biophysical knowledge, we have constructed an end-to-end computational firing-rate11
model of the Manduca sexta moth olfactory system which includes the interaction of the AL and12
MB under octopamine stimulation. Our model is able to robustly learn new odors, and neural firing13
rates in our simulations match the statistical features of in vivo firing rate data. From a biological14
perspective, the model provides a valuable tool for examining the role of neuromodulators, like15
octopamine, in learning, and gives insight into critical interactions between sparsity, Hebbian16
growth, and stimulation during learning. Our simulations also inform predictions about structural17
details of the olfactory system that are not currently well-characterized. From a machine learning18
perspective, the model yields bio-inspired mechanisms that are potentially useful in constructing19
neural nets for rapid learning from very few samples. These mechanisms include high-noise20
layers, sparse layers as noise filters, and a biologically-plausible optimization method to train the21
network based on octopamine stimulation, sparse layers, and Hebbian growth.22
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1 INTRODUCTION

Learning is a vital function of biological neural networks, yet the underlying mechanisms responsible for25
robust and rapid learning are not well understood. The insect olfactory network, and the moth’s olfactory26
network (MON) in particular (e.g. in the Manduca sexta moth), is a comparatively simple biological27
neural network capable of learning Riffell et al. (2008); Daly et al. (2001), and makes an ideal model28
organism for characterizing the mechanics of learning. It is amenable to interrogation through experimental29
neural recordings of key, well-understood structural components including the antennal lobe (AL) Wilson30
(2008) and mushroom body (MB) Campbell and Turner (2010). In addition, the AL-MB contain many31
structural motifs that are widespread in biological neural systems. These motifs include: (i) the use of32
neuromodulators (octopamine and dopamine) in learning Dacks et al. (2012), (ii) a cascading networks33
structure Masse et al. (2009), (iii) large changes in dimensionality (ie numbers of neurons) between34
networks Laurent (2002), (iv) sparse encodings of data in high-dimensional networks Honegger et al.35
(2011), (v) random connections Caron (2013), and (vi) the presence of noisy signals Galizia (2014).36
Bio-inspired design principles suggest that each of the features has high value to the olfactory system.37
The mechanism of octopamine/dopamine release during learning is of particular interest, since it is not38
well-understood how this stimulation promotes the construction of new sparse codes in the MB.39

In this work, we build a computational model of the moth olfactory network, including both AL and MB,40
that is closely aligned with both the known biophysics of the moth AL-MB and in vivo neural firing rate41
data, and that includes the dynamics of octopamine stimulation. We then run simulations to investigate how42
the system components interact to learn new odors. When building our Network Model we have consulted43
the literature, subject to a caveat: Moths and flies are similar enough that findings in flies (Drosophila) can44
generally be transferred to the moth; but locusts and honeybees are more complex, and some findings in45
these insects do not safely transfer, while other findings are general enough to readily apply Riffell et al.46
(2009a).47

There exist several computational models based on the insect brain Nowotny et al. (2005); Bazhenov et al.48
(2013); Peng and Chittka (2017); Roper et al. (2017); Mosqueiro and Huerta (2014); Arena et al. (2013);49
Faghihi et al. (2017); Huerta and Nowotny (2009); Nowotny (2009); Jortner et al. (2007); Garcı́a-Sanchez50
and Huerta (2003). Because the MB is central to memory, these models focus on the sparsely-firing,51
high-dimensional MB plus readout neuron(s), leaving aside the AL or treating it as a “pass-through”. Some52
of these models incorporate forms of Hebbian plasticity Nowotny (2009); Nowotny et al. (2005); Peng53
and Chittka (2017); Bazhenov et al. (2013); Huerta and Nowotny (2009) In general these models are not54
closely tied to a particular organism (though they are usually inspired by locusts or honeybees), so they are55
“top-down” designs, allowing freedom with model parameters in the service of capturing general behaviors56
(indeed, Peng and Chittka (2017) points out the advantages of this more general approach).57

Key findings of these models include: The value (for class separation) of the fan-out into the high-58
dimensional, sparsely-firing MB; theoretical calculations of parameters such as optimal AL→MB59
connectivity Garcı́a-Sanchez and Huerta (2003); Nowotny (2009); the value of random neural connectivity60
Nowotny (2009); Peng and Chittka (2017); the ability of the simple MB structure to capture complex61
behaviors Bazhenov et al. (2013); Roper et al. (2017); Peng and Chittka (2017); robust performance over62
wide tuning parameter ranges Roper et al. (2017); Huerta and Nowotny (2009); and the generalized learning63
skills of the insect MB, given a Hebbian update mechanism Peng and Chittka (2017); Huerta and Nowotny64
(2009); Faghihi et al. (2017); Arena et al. (2013); Mosqueiro and Huerta (2014).65
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Our computational model of learning in the MON is distinct in four key ways from these general, MB-66
focused studies. (i) We model the architecture and neural dynamics of the whole system. This includes67
detailed internal wiring of the AL, the MB, inhibition from the Lateral Horn, octopamine stimulation68
during learning, Hebbian plasticity, and an extrinsic (readout) neuron downstream. Linking careful models69
of the AL and MB fills a particular gap in the literature called out by Mosqueiro and Huerta (2014). (ii) We70
include octopamine stimulation in the dynamics equations. The neuromodulator octopamine (similarly71
dopamine) is essential to learning in the insect olfactory network Hammer and Menzel (1995, 1998), but72
it has not (to our knowledge) been incorporated into a computational model. Thanks to a unique dataset73
we are able to model this key component, and trace its effects on the AL, the MB, and learning. (iii) We74
tether our model architecture to a particular insect system (the M. sexta moth). As part of this tethering,75
(iv) we calibrate the model’s AL firing rate behavior to a dataset of in vivo neural recordings of moths76
during learning, ie while exposed to both odors and octopamine. Thus our model is built “bottom-up”,77
with parameters as far as possible determined by a particular organism. For example, we set AL→MB78
connectivity and weights based on clues in biophysical studies and calibration to in vivo firing rates, rather79
than using the model to explore theoretically optimal values. This is an opposite, and complementary,80
approach to the studies cited above, and in combination with our unique in vivo octopamine data yields in81
several new findings, as well as some findings that reinforce those of previous studies but from a different82
angle.83

We thus create a full, end-to-end neural network model (hereafter “Network Model”) that demonstrates84
robust learning behavior while also tightly matching the structure and behavior of a particular biological85
system. This approach has three advantages: (i) we can meaningfully compare Network Model simulation86
output to experimental data in order to tune model parameters; (ii) findings from our simulation results87
can map back to the original biological system to offer meaningful biophysical insights; and (iii) Network88
Model simulations allow us to study how the various key elements in the moth’s toolkit (eg AL, MB,89
octopamine, and Hebbian updates) interact to enable learning. We can thus derive bio-inspired insight90
into the mathematical framework that enables rapid and robust learning in neural nets. Specifically, our91
experiments elucidate mechanisms for fast learning from noisy data that rely on cascaded networks, sparsity,92
and Hebbian plasticity.93

These mechanisms have potential applications to engineered neural nets (NNs). NNs have emerged94
as a dominant mathematical paradigm for characterizing neural processing and learning, honoring their95
inspiration in the Nobel prize winning work of Hubel and Wiesel on the primary visual cortex of cats96
Hubel and Wiesel (1962). These seminal experiments showed that networks of neurons were organized97
in hierarchical layers of cells for processing visual stimulus. The first mathematical model of a neural98
network, the Neocognitron in 1980 Fukushima (1980), had many of the characteristic features of today’s99
deep neural networks (DNNs). However, many of the biological motifs listed above (for insect AL-MBs)100
are largely absent from engineered NNs, whose principles and building blocks are biologically implausible101
even as DNNs have achieved great success Schmidhuber (2015); LeCun (2015). For example, the AL-MB102
interaction with octopamine, Hebbian plasticity, and sparsity operates in a fundamentally different manner103
than the backprop optimization used in DNNs, and it also succeeds at tasks (eg rapid learning) where104
DNNs struggle. These biological mechanisms thus represent a potential opportunity to expand the set105
of structural and algorithmic tools available for ML tasks. We seek to characterize an actionable set of106
biological elements, a “biological toolkit”, that can be assembled into complementary NN architectures107
or inserted into engineered NNs, and that are capable of rapid and robust learning from very few training108
samples, an ability common in biological NNs but challenging for today’s DNNs.109
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To briefly summarize the AL-MB network: It is organized as a feed-forward cascade of five distinct110
networks, as well as a reward mechanism Martin et al. (2011); Kvello et al. (2009); Hildebrand (1996).111
Roughly 30,000 noisy chemical receptor neurons (RNs) detect odor and send signals to the Antenna112
Lobe (AL) Masse et al. (2009). The AL acts as a pre-amplifier, providing gain control and sharpening113
of odor representations Bhandawat et al. (2007); Kuebler et al. (2012). It contains roughly 60 isolated114
units (glomeruli) Huetteroth and Schachtner (2005), each focused on a single odor stimuli feature Martin115
et al. (2011); Christensen et al. (1995). Glomeruli laterally inhibit each other, and project odor codes to116
the Mushroom Body (MB). AL neurons are noisy Galizia (2014); Lei et al. (2011). The MB contains117
about 4000 Kenyon Cells (KCs). These fire sparsely and encode odor signatures as memories Perisse et al.118
(2013); Campbell and Turner (2010); Honegger et al. (2011); Balkenius and Hansson (2012). MB sparsity119
is enforced by global inhibition from the Lateral Horn Bazhenov and Stopfer (2010). Extrinsic Neurons120
(ENs), numbering ∼10’s, are believed to be “readout neurons” that interpret the KC codes Campbell et al.121
(2013); Hige et al. (2015). In response to reward (sugar at the proboscis), a large neuron sprays octopamine122
globally over the AL and MB, causing generalized stimulation of neurons Riffell et al. (2012); Dacks123
et al. (2008). Learning does not occur without this octopamine input Hammer and Menzel (1995, 1998).124
The connections into the KCs (AL→KCs) and out of the KCs (KCs→ENs) are plastic during learning125
Cassenaer and Laurent (2007); Masse et al. (2009). Figure 1 gives a system schematic (A) along with126
typical firing rate (FR) timecourses (from simulation) for neurons in each network (B). More network127
details are given in Methods.128

2 RESULTS

We first show the calibration of our Network Model to in vivo data. We then describe neural behaviors of129
the Network Model during learning and give results of learning experiments. Finally, we give results of130
experiments on MB sparsity.131

2.1 Calibration of Model132

The Network Model was calibrated to behave in a statistically similar way to three sets of in vivo data133
measuring projection neuron (PN) firing rate (FR) activity in the AL (See Methods for details): (i) PN134
spike counts with odor but without octopamine: 129 units with FR>1 spike/sec, (ii) PN spike counts with135
odor and with octopamine: 180 units with FR>1 spike/sec, and (iii) PN spike counts with odor, with and136
without octopamine: 52 units with FR>1 spike/sec.137

Due to the limited number of experimental units, only qualitative comparisons of the model and ex-138
periment could be made: Excessive tuning of the model parameters would have served only to overfit139
the particular data, rather than matching true PN behavior distributions or, more importantly, the general140
learning behavior of the moth. Figure 2 shows the close match of typical Network Model PN statistics to141
in vivo PN statistics based on mean (µ) and variance (σ) of spontaneous FRs and odor responses, both142
without and with octopamine (details of metrics are given in Methods). Importantly, Figure 2 shows143
significant octopamine-modulated increase in PN FR activity in the Network Model, consistent with in144
vivo experiments involving octopamine stimulation.145

There is limited experimental data measuring the FR activity of Kenyon cells (KC) in the MB, and no146
data to our knowledge measuring KC in response to octopamine stimulation. However, we note that the147
behavior of KCs during the application of octopamine to the AL, either with or without odor, is not an148
artifact of parameter tuning. Rather, it follows from the tuning the AL to match in vivo data. Specifically,149
PN FRs at baseline (with no odor or octopamine), with odor alone, with octopamine alone, and with odor150
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and octopamine, are all determined by calibration of the model to in vivo data. KCs respond only to PNs151
and to inhibition from the LH (See Figure 1). Calibrating the KC baseline response in the absence of152
octopamine to in vivo data in Turner et al. (2008) fixes the feed-forward connections from PNs. Assumed153
in this model, due to lack of biophysical evidence, is that octopamine has no direct stimulative effect on154
KC FRs (we do posit that it acts as an “on switch” for plasticity. Thus KC behavior with octopamine is155
fully determined once the model is tuned to PN data. This completes the calibration process of our model156
parameters. As Figure 2 shows, the model agrees well with in vivo experiment.157

There are no bulk data, to our knowledge, measuring EN firing rates in response to odors and/or158
octopamine. However, calibrating EN response is not necessary to demonstrate an ability to learn. The key159
marker is post-training increase in EN response.160

2.2 Learning Experiments: PN and KC Behaviors161

PN activity in the AL, and KC activity in the MB, from typical Network Model simulations are shown in162
Figure 1 as heatmaps, evolved over the time course of a simulation in which the system was exposed to163
two different odors and trained on one of them. The AL is stimulated with octopamine during training.164
Each row of the heatmap represents a distinct PN or KC as it evolves in time (left to right columns of heat165
map). All the timescales are aligned. Neural behaviors are as follows:166

2.2.1 PNs167

In the AL heatmap, the light blue region corresponds to PN FRs within 2.5σs of their respective mean168
spontaneous FRs µs, warm colors correspond to very high FRs, and dark blues correspond to strongly169
inhibited FRs. The simulations demonstrate a number of key PN behaviors, including (i) absent odor, PN170
FRs stay within their noise envelopes (by definition), (ii) the two odors have distinct excitation/inhibition171
signatures on PNs, (iii) octopamine alone (without odor) results in more PNs being excited beyond their172
usual noise envelopes, and also results in some PNs being inhibited below their usual envelopes, (iv)173
octopamine and odor, applied together, result in an overall excitation of PNs, and (v) the AL behavior174
returns to baseline after octopamine is withdrawn, since AL connection weights do not have (long-term)175
plasticity Davis (2005).176

2.2.2 KCs177

In the MB, the KCs fire sparsely due to global inhibition from the Lateral Horn. The only plastic178
connections in the AL-MB system involve the KCs: Between PNs and KCs (MPK ,MQK in Methods179
Section); and between KCs and extrinsic readout neurons (ENs) (MKE in Methods Section). Thus the KC180
odor signatures are modulated with training. Each row in the MB heatmap represents one of 500 randomly181
selected KCs in the simulation as it evolves in time (left to right columns of heat map). Black regions182
indicate FRs < 1 spike/sec, white regions indicate FRs > 1 spike/sec. The white regions have been dilated183
to make the sparsely-firing KCs easier to see.184

The simulations demonstrate a number of key KC behaviors, including (i) the baseline KC FR response185
absent any odor is essentially zero, (ii) the two odors excite distinct sets of KCs with varying consistency186
from noise trial to noise trial, (iii) for a given odor, some KCs fire reliably in response to an odor stimulation187
and some fire only occasionally, (iv) when subject to octopamine but no odor, KCs are unresponsive, a188
benefit during learning since it prevents environmental noise from being encoded as meaningful, (v) when189
subject to both octopamine and odor, KCs respond strongly to the odor with high trial-to-trial consistency,190
and (vi) the global inhibition from the LH controls the level of sparseness in the KCs, both their silence191
absent any odor (with or without octopamine), and their sparse firing in response to odors.192
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Statistics of KC responses to odors pre-, during, and post-training are shown in Figure 3. Naive moths193
have low KC response to odors, in both percentage of KCs activated and their consistency of response to194
odor stimulations (Figure 3, blue dots and curves). During training octopamine induces high KC response,195
in both percentage and consistency (Figure 3, red dots and curves). After octopamine is withdrawn,196
KC response is lower than during training, but remains higher than naive levels in both percentage and197
consistency (Figure 3, green dots and curves) for the trained odor only. Thus the newly-learned importance198
of the trained odor is encoded as broader and stronger KC responses by means of strengthened synaptic199
connections.200

EN (readout neuron) activity is also shown over time at the bottom of Figure 1. Learning is evidenced by201
the increased EN response to the trained odor even after octopamine has been withdrawn, due to Hebbian202
growth of synaptic connections into and out of the MB.203

The FR activity of the PNs in the AL, the KCs in the MB, and the ENs, as illustrated in Figs. 1 and 3,204
demonstrate the entire learning process that occurs under the influence of octopamine stimulation. Without205
octopamine, learning does not occur.206

Interestingly, although the AL does not itself experience plasticity changes, it is the AL’s increased FR207
activity (induced by octopamine) which enables permanent synaptic weight changes in the MB via Hebbian208
plastic updates.209

2.3 Learning Experiments: EN Behavior210

A key finding of this paper is that the AL-MB model demonstrates robust learning behavior. Here211
“learning” is defined as permanently modifying synaptic weights in the system so that the reinforced odor212
yields a significantly stronger response in the readout neuron (EN) post-training, relative to naive (ie213
pre-training) response to that odor, and also relative to the post-training responses to control odors.214

2.3.1 Structure of Learning Experiments215

Moths were randomly generated from a fixed parameter template, which included randomly-assigned216
input maps (odor→AL) for four odors. The odors projected broadly onto the AL, each odor hitting ∼20217
out of 60 glomeruli. As a result, their projections onto the AL overlapped substantially. A combinatorial218
calculation (4 independent draws of “60 choose 20”) shows that, on average, a given odor projected219
uniquely onto about 6 glomeruli, and shared its other 14 glomeruli with other odors. Each generated moth220
was put through a series of training experiments, with each run in the series structured as follows:221

1. The moth first received a series of stimulations from each odor, to establish a baseline (naive) EN222
response. The stimulations were 0.2 seconds long and separated by gaps of several seconds.223

2. The moth was trained on one of the odors for 1 to 4 sessions (one session = 5 odor stimulations), by224
applying odor and octopamine concurrently. The MB plastic weights were updated according to a225
Hebbian rule.226

3. Upon completion of training, the four odors were each again applied as a series of odor stimulations,227
to establish post-training EN response.228

For each {odor, #sessions} pair, this experiment was conducted 11 times (ie 11 noise realizations), for229
a total of 176 experiments on each moth. These results were aggregated to assess the particular moth’s230
learning response.231
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2.3.2 Learning Experiment Results232

As a general rule, Network Model moths consistently demonstrated strong learning behavior in terms of233
EN response: Training increased EN response to the trained odor well beyond naive levels, and also much234
more than it affected EN response to control odors. Figure 4 summarizes the changes in EN responses235
in a typical experiment on a moth with four odors. Panel A shows a typical noise realization timecourse,236
where one odor was reinforced with octopamine and the other three odors were controls. Panel B shows237
the statistics of EN response modulation, according to {odor, #sessions} pairs.238

For ease of interpretation, the moth shown in Figure 4 had naive EN responses of roughly equal magnitude239
for all four odors. When naive EN response magnitudes were highly uneven (> 3x), robust learning still240
occurred, but the interpretation of the results is more complex due to scaling issues. A typical experiment241
using a moth with odor responses of highly unequal magnitude is shown in SI.242

2.3.3 Points of interest (EN responses to learning)243

1. Because EN response is driven solely by feed-forward signals from KCs, ENs had response ≈ 0 in the244
absence of odor, with or without octopamine, as expected (since KCs are silent absent any odor). Thus245
Hebbian growth during training did not increase EN baseline (no-odor) response.246

2. The EN response to odor + octopamine was always very strong, as seen in Figure 4A, where EN247
responses to odor + octopamine extend above the top of the figure. Note that this effect follows248
automatically from the calibration of the Network Model to in vivo data. Its functional value to the249
moth is addressed in the Discussion.250

3. Training consistently increased the EN response to the reinforced odor much more than EN response251
to control odors, measured as percentage of naive odor response.252

Since the Network Model did not include a Hebbian decay dynamic (for simplicity, absent clear253
evidence), this was the key indicator of robust learning. That is, focused learning was expressed by254
substantially higher increase in EN response to reinforced vs control odors. We assume that an added255
Hebbian decay term would have knocked smaller increases back, thus returning control odor responses256
to baseline.257

Results of ANOVA analysis for differential effects of training on reinforced vs unreinforced odors shows258
that when naive odor EN response magnitudes were similar (within 3x of each other) p-values were259
consistently < 0.01. ANOVA analysis results are given in SI.260

2.4 MB Sparsity Experiments261

Projection into a high-dimensional, sparse layer is a common motif in biological neural systems Ganguli262
and Sompolinsky (2012); Litwin-Kumar et al. (2017). To explore the role of MB sparsity during learning,263
we ran Network Model experiments that varied the level of generalized inhibition imposed on the MB (the264
lateral horn, LH, controls MB sparsity level). Each experiment set a certain level of LH inhibition, then ran265
simulations (see Methods) that trained moths on one odor with 15 odor stimulations and left one control266
odor untrained. EN responses to both trained and control odors were recorded, as well as the percentage of267
KCs active in response to odor.268

Too little damping from the LH resulted in a high percentage of KCs being active (low sparsity). This269
regime gave consistent EN responses to odor. But it also caused EN responses to both control odor and270
noise to increase significantly during training, reducing the contrast between EN responses to trained and271
control odors and also increasing spontaneous EN noise.272
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Too much damping resulted in a very low percentage of KCs being active (high sparsity). This ensured273
that training gains were focused on the trained odor while EN response to control odors and noise were not274
boosted. However, in this regime EN responses to all odors, both pre- and post-training, were generally275
unreliable because too few KCs were activated.276

Thus sparseness in the high-dimensional MB fulfilled a vital role in the Network Model’s learning system.277
LH inhibition of the MB had an optimal sparsity regime that balanced opposing demands: KC firing had278
to be sufficiently dense for reliable odor response on one hand, and sufficiently sparse for well-targeted279
Hebbian growth on the other. Timecourses illustrating the effects of too-little or too-much sparsity are seen280
in Figure 5A. Figure 5B shows how this trade-off varied with MB sparsity, by plotting two figures-of-merit:281

Signal-to-Noise Ratio (SNR) =
µ(f)

σ(f)
where f = EN odor response; (1)

and282

“Learning Focus” =
µ(fT )

µ(fC)
, where µ(fT ) = mean post-training EN (2)

response to trained odor, µ(fC) = mean post-training EN response to control odor.283

3 DISCUSSION

Because we took a distinct approach to designing our Network Model, and because we had access to unique284
in vivo octopamine data, our experiments yield novel insights into the moth olfactory network and how285
it learns. This discussion focuses on four areas: (i) predictions about aspects of the AL-MB still unclear286
in the literature, (ii) the role of sparse layers, (iii) the role of octopamine, and (iv) the value of noise. In287
addition, we consider these insights in the context of Machine Learning.288

289

3.1 Predictions re details of AL-MB structure290

Because our Network Model in tethered to a particular system, both the calibration process and simulations291
offer hints as to some unresolved biophysical aspects of the moth’s AL-MB system. Some examples:292

3.1.1 Do LNs inhibit PNs and LNs as well as RNs293

In the AL, LNs have a net inhibitory effect on PNs Olsen et al. (2010); Lei et al. (2002), but the exact294
means to this end are not clear. In particular, while LNs are known to inhibit RNs Olsen et al. (2010), it295
is less clear whether or to what degree LNs also directly inhibit PNs and LNs. Efforts to calibrate our296
Network Model to in vivo data indicate that LNs need to inhibit not just RNs, but also (to a lesser degree)297
LNs and PNs. The model weight strengths for LN→RN,→LN, and→PN are in the ratio of 6:2:1. That298
LNs would inhibit LNs makes sense when the goal is maximizing PN output of the active glomerulus: By299
inhibiting the LNs of rival glomeruli, the active glomerulus reduces the amount of inhibition directed at300
itself. Similarly, that LNs would inhibit PNs makes sense if the goal is to reduce the PN output of rival301
glomeruli.302

3.1.2 Octopamine’s effects on different neuron types303

Octopamine increases the responsivity of a neuron to incoming signals. It is unclear how or whether304
octopamine affects various neuron types (ie RNs, PNs, LNs, KCs). Calibration of the Network Model’s AL305
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behavior, and tuning of KC behavior to enable learning, indicate that octopamine needs to target RNs and306
LNs, but not PNs, KCs, or ENs. Logical arguments support these findings:307

RNs: Because RNs initially receive the odor signal, these are logical neurons to stimulate with octopamine,308
because it sharpens their response to the exact signature being trained, which in turn sharpen the AL’s309
output code for that odor.310

LNs: LNs have the dual roles of inhibiting rival glomeruli and limiting overall PN output in the AL.311
For the first role, increased LN response to RNs will tend to sharpen AL response to the trained odor, by312
accentuating inhibition of rival glomeruli PNs. For the second role, increased LN activity mitigates the risk313
that increased RN activity (due to octopamine) might blow up the overall PN output of the AL.314

PNs: Our Network Model simulations suggest that PNs should receive little or no octopamine stimulation.315
While increasing PN responsivity would benefit RN-induced sharpening of the trained odor’s signature,316
there are three downsides. First, RN input to PNs is intrinsically noisy, so higher PN responsivity amplifies317
noise as well as signal. Second, since PNs respond to LNs, higher PN activity tends to reduce the impact318
of LN inhibition, and thus reduces the inhibition-induced sharpening of the AL odor response caused by319
octopamine. Third, increasing PN responsivity can have an outsize effect on overall PN firing rates, ie it is320
a “high-gain” knob and therefore risky.321

KCs: Our Network Model simulations indicate that direct octopamine stimulation of KCs greatly reduces322
sparseness in the MB (given the mechanics of our global inhibition on KCs), which can be disastrous to323
learning. Thus we expect that octopamine has no, or only slight, direct stimulative effect on KCs. However,324
other forms of global inhibition might admit direct octopamine stimulation of KCs while still preserving325
sparsity: (i) If the strength of the Lateral Horn’s inhibition signal tracks the AL output, then octopamine326
stimulation of KCs would be offset by increased inhibition from the LH, due to increased AL output to the327
LH, preserving sparsity; (ii) if the KC population generates the inhibition signal, as in Lin et al. (2014),328
then octopamine stimulation of KCs would result in a counteractive stronger inhibition, again preserving329
sparsity. The arguments for why PNs should receive very little direct octopamine stimulation (given above)330
apply to KCs as well; but it is also possible that direct stimulation of KCs might improve learning by331
enabling random exploration of the odor-coding solution space (as mooted below for octopamine).332

3.2 Noise filtering role of the sparse, high-dimensional stage333

Projection from a dense, low-dimensional coding space (eg the AL) to a sparse, high-dimensional coding334
space (eg KCs in the MB) is a widespread motif of biological neural systems, with size shifts routinely on335
the order of 20x to 100x Ganguli and Sompolinsky (2012); Babadi and Sompolinsky (2014); Litwin-Kumar336
et al. (2017). Some proposed reasons include information capacity, long-range brain communication, and337
reduced training data needs Ganguli and Sompolinsky (2012), as well as better inherent discrimination338
ability Peng and Chittka (2017); Litwin-Kumar et al. (2017); Bazhenov et al. (2013).339

Our Network Model experiments highlight another key role of sparseness, relevant to learning: It acts340
as a robust noise filter that prevents the Hebbian growth process from amplifying upstream noise to341
out-of-control levels. Though noise may be useful (or unavoidable) in upstream networks such as the AL,342
noise that reaches the neurons on both sides of a plastic synaptic connection will be amplified by Hebbian343
growth during learning, swamping the system’s downstream neurons (eg ENs) with noise.344

However, the “fire together, wire together” principle of Hebbian learning is an AND gate. Thus it suffices345
to remove noise from just one of the two connected neurons to eliminate synaptic growth. Sparsity does346
precisely this, and is arguably a necessary part of a workable Hebbian learning mechanism. We also find347
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that high sparsity focuses learning (even absent upstream noise), ie it enables better learned separation348
of classes, in agreement with Peng and Chittka (2017); Huerta and Nowotny (2009). The negative effect349
of high sparsity on SNR (Fig 5) found in our experiments meshes with a similar observation in Nowotny350
(2009).351

Setting aside the particular demands of Hebbian plasticity, robust noise filtering may be a core function352
of sparse, high-dimensional stages within any network cascade where noise accumulates due to (beneficial)353
use in upstream stages.354

3.3 Roles of octopamine355

The levels of octopamine stimulation in our Network Model were calibrated to in vivo data on PN356
responses to octopamine. Thus, our simulations give novel insights into downstream effects of octopamine357
on plasticity, KC responses, EN responses, and Hebbian learning.358

3.3.1 Accelerant359

Moths can learn to respond to new odors remarkably quickly, in just a few exposures. Our simulations360
indicates that while Hebbian growth can occur without octopamine, it is so slow that actionable learning, ie361
in terms of amplified EN responses, does not occur.362

This implies that octopamine, through its stimulative effect, acts as a powerful accelerant to learning.363
Perhaps it is a mechanism that allows the moth to work around intrinsic organic constraints on Hebbian364
growth of new synapses, constraints which would otherwise restrict the moth to an unacceptably slow365
learning rate. To the degree that octopamine enabled a moth to learn more quickly, with fewer training366
samples, it would clearly be highly adaptive.367

3.3.2 Active learning368

Our simulations indicate that octopamine strongly stimulates the EN response to even an unfamiliar369
odor. Since octopamine is delivered as a reward, this has a beneficial effect in the context of reinforcement370
learning Sutton and Barto (1998), with the moth as the learning agent. An agent (the moth) can in some371
cases learn more quickly when it has choice as to the sequence of training samples (Active Learning Settles372
(2012)).373

In particular, when a certain class of training sample is relatively rare, it benefits the agent to actively seek374
out more samples of that class Attenberg and Provost (2010). Octopamine enforces high EN response to a375
reinforced odor, ensuring that ENs will consistently exceed their “take action” threshold during training. If376
the action is to “approach”, the moth is more likely to again encounter the odor, thus reaping the benefits377
predicted by Active Learning theory. This advantage applies in the context of positively-reinforced odors.378

In the case of aversive learning, the high EN responses to unfamiliar but objectionable odors, due to379
dopamine, would cause the moth to preferentially avoid further examples of the odor. This would slow380
learning of aversive responses (a drawback), but would also minimize the moth’s exposure to bad odors381
(danger avoidance, a benefit).382

3.3.3 Exploration of optimization space383

A limitation of Hebbian growth is that it can only reinforce what already exists. That is, it only strengthens384
channels that are transmitting signals deemed (by association) relevant to the stimulus being reinforced.385
Absent a mechanism like octopamine, this constrains growth to channels that are already active. Our386
simulations indicate that octopamine induces much broader activity, both upstream from and within the387
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plastic layer, thus activating new transmitting channels. This allows the system to strengthen, and bring388
permanently online, synaptic connections that were formerly silent. This expands the solution space the389
system can explore during learning. This function may be particularly important given the constraint of390
sparsity placed on odor codes in the MB.391

3.3.4 Injury compensation392

There is evidence that many forms of injury to neurons result in dropped spikes and thus lower firing rates393
in response to odors Maia and Kutz (2017). This injury-induced drop in the signals reaching the ENs could394
induce behavioral consequences, by lowering EN responses to below key behavioral action thresholds.395
Experiments in Delahunt et al. (2018) suggest that octopamine drives a mechanism to compensate for this396
type of neural injury.397

Suppose that injury has reduced an upstream neural signal, such that a downstream EN can no longer398
exceed its behavioral action threshold. Octopamine stimulation of the upstream network will temporarily399
boost the reduced (injured) signal strength, so that the input signals to the ENs are above threshold during400
training. This in turn allows Hebbian growth to strengthen the synaptic connections to those ENs. Once401
octopamine is withdrawn, the inputs from the (still-injured) upstream network revert to their reduced level.402
But due to the newly-strengthened connection weights, these reduced inputs suffice to push EN response403
above its action threshold, restoring EN-controlled behaviors to their pre-injury baseline.404

This mechanism (octopamine stimulation plus Hebbian synaptic growth) might allow neural systems405
to regain behavioral function lost due to damage to upstream regions, by increasing connection strengths406
downstream from the point of injury. Indeed, given the vital importance of injury mitigation to survival,407
it is possible that the “learning” mechanism originally evolved for the purpose of restoring behavioral408
function impaired by neural damage.409

3.4 The value of noise410

Noise in biological neural systems is believed to add value (besides just being cheap), for example by411
encoding probability distributions and enabling neural Baysian estimations of posteriors Ma et al. (2006).412
In addition, injection of noise while training engineered NNs can improve trained accuracy An (1996). Our413
experiments indicate that in the AL-MB, noise has two other potential benefits, coupled with a caveat.414

First, noise in the AL adds an extra dimension to MB odor encoding, increasing the granularity of its odor415
responses (Figure 3). The MB responds to odors in two ways: (i) by the number of KCs that are responsive,416
and (ii) by the reliability (eg from 10% to 100%) of their responses. This can be seen in the effect of417
octopamine on KC odor response, Figure 3 (B). Octopamine boosts MB odor response by increasing418
the number of active KCs (horizontal shift in response curves) and also by increasing the reliability of419
responsive KCs (vertical shift in responsivity curves). Both these shifts represent a stronger MB response420
and translate into stronger EN response.421

Taken together, they provide a finer granularity of the response range than does the binary response of422
a noise-free system. That is, the MB response to noisy inputs from the AL is a concrete example of a423
mechanism used by a neural system to translate the probability distributions encoded by noisy neurons into424
actionable signals with high dynamic range and granularity.425

Second, the system is also potentially robust to noisy stimuli. In the neural net context, input samples (ie426
inputs to the feature-reading layer) can be thought of as a de facto “first layer” of the neural net. A system427
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that is robust to upstream noise may also be naturally robust to noisy inputs, a further potential advantage428
of judicially-placed sparse layers.429

The caveat is that noise in the AL-MB must be confined to the AL, ie upstream from the encoding layer,430
in order to protect the readout neurons and Hebbian learning mechanism from noise. The system’s success431
depends on robust noise filtering at the MB layer, via global inhibition from the LH. So the three-stage432
architecture consisting of: “Noisy pre-amplifier layer→ Sparse noise-reduction layer→ Decision layer” is433
an interdependent system well-suited to nuanced decision-making.434

3.5 Applications to Machine Learning435

The model and simulations in this paper characterize key features of the AL-MB system which might436
usefully be ported to machine learning algorithms. These features include: Generalized stimulation during437
training; Hebbian growth; sparse layers to control plastic connections and filter noise; and noisy initial438
layers. Advantages of this biological toolkit include:439

3.5.1 Fast learning440

Moths can reliably learn a new odor in less than 10 exposures, and biological brains in general can learn441
given very few training samples. This contrasts by orders of magnitude with the voracious data demands of442
DNNs, for which assembling sufficient training data can be a serious chokepoint in deployment. Indeed,443
when learning handwritten digits from very few samples (1 to 10 per class), an insect brain outperforms444
ML methods including CNNs Delahunt and Kutz (2018). These “fast and rough” biological mechanisms,445
seen in the moth in their simplest form, thus have potential to act as a complement to the precise but slow446
learning of DNNs.447

3.5.2 Robustness to noise448

The sparse layer in the AL-MB acts as an effective noise filter, protecting the readout neurons from a noisy449
upstream layer (the AL). Since the system is designed to accommodate upstream noise, it is possible that it450
can also readily accommodate noisy input samples. NNs have a troublesome property, that input-output451
score functions are not locally continuous Szegedy et al. (2013). Biological neural nets seem to avoid this452
particular fault (or at least have different, complementary discontinuities). The noisy layer→ sparse layer453
motif may be one reason for this. It may thus be a useful motif to apply in ML architectures.454

3.5.3 Novel training mechanism455

Hebbian growth, combined with octopamine stimulation and the focusing effect of sparse layers, is a456
novel (in the context of ML) mechanism to explore a solution space and train a classifier. In particular, it457
works on a different principle than the backprop algorithm that drives DNNs: It does not minimize a loss458
function via gradient descent, nor does it punish incorrect answers; rather, it selectively strengthens those459
connections that transmit meaningful signals, and weakens connections that are inactive. We argue that this460
biological optimization mechanism is of potential value to ML because it is (i) functionally distinct from461
the backprop algorithm currently used, and (ii) known to succeed in regimes (eg rapid learning) where462
backprop struggles.463

3.5.4 Biological plausibility464

One characteristic (not criticism) of backprop is its biological implausibility, since it requires a neuron to465
have more than local knowledge of the system. A current area of interest, especially in the context of DNNs466
Bengio and Fischer (2015), is the search for neural network architectures (for example with recurrent467
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connections to transport non-local information) and variants of backprop which are biologically plausible,468
which might narrow the gap between biological and engineered NNs. Our experiments demonstrate that469
the triad of octopamine stimulation + Hebbian growth + sparse layers can efficiently train a NN, and is thus470
a possible candidate to address the biological plausibility gap.471

4 MATERIALS AND METHODS

This section gives a detailed description of the biological moth olfactory network, as well as our Network472
Model. The biological detail is relevant because our model is built “from the ground up”, ie it is based473
on a particular organism, rather than being a “top-down”, more theoretically-based, architecture. We also474
provide a Glossary, and describe the in vivo data used for model calibration.475

4.1 Moth olfactory system overview476

The parts of the AL-MB implicated in learning are organized as a feed-forward cascade of five distinct477
networks, as well as a reward mechanism Martin et al. (2011); Kvello et al. (2009). Figure 1 gives a system478
schematic along with typical firing rate (FR) timecourses (from simulation) for neurons in each network.479

1. Antennae. Roughly 30,000 noisy chemical receptors detect odor and send signals to the Antenna Lobe480
Masse et al. (2009).481

2. Antenna Lobe (AL). Contains roughly 60 units (glomeruli), each focused on a single odor feature482
Martin et al. (2011). The AL essentially acts as a pre-amp, boosting faint signals and denoising the483
antennae inputs Bhandawat et al. (2007). AL neurons are noisy Galizia (2014).484

3. Lateral Horn (LH). Though not fully understood, one key function is global inhibition of the Mushroom485
Body to enforce sparseness Bazhenov and Stopfer (2010).486

4. Mushroom Body (MB), here synonymous with the Kenyon Cells (KCs). About 4000 KCs are located in487
the calyx of the Mushroom Body (MB). These fire sparsely and are believed to encode odor signatures488
Perisse et al. (2013); Campbell and Turner (2010); Honegger et al. (2011). KCs are believed to be489
relatively noise-free Perez-Orive et al. (2002).490

5. Extrinsic Neurons (ENs), numbering ∼10’s, located downstream from the KCs. These are believed491
to be “readout neurons” that interpret the KC codes and convey actionable messages (such as “fly492
upwind”) Campbell et al. (2013); Hige et al. (2015).493

6. Reward Mechanism. A large neuron sprays octopamine globally over the AL and MB, in response to494
reward, such as sugar at the proboscis. Learning does not occur without this octopamine input Hammer495
and Menzel (1995, 1998). The neuromodulator dopamine works similarly, but drives aversive learning496
Dacks et al. (2012).497

7. Inter-network connections: In the AL-MB these are strictly feed-forward, either excitatory or in-498
hibitory. In particular, Antennae→AL, AL→LH, KCs→ENs are all excitatory. LH→KCs is inhibitory.499
AL→KCs have both excitatory and inhibitory channels.500

8. Plasticity: The connections into the KCs (AL→KCs) and out of the KCs (KCs→ENs) are known to501
be plastic during learning Cassenaer and Laurent (2007); Masse et al. (2009). The AL does not have502
long-term plasticity Davis (2005).503
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4.2 Glossary504

Antenna lobe (AL): A collection of neurons innervated by odor receptors in the antennae. It sends signals505
to the mushroom body via projection neurons. Connections in the AL are not plastic.506
Mushroom body (MB): A collection of neurons (Kenyon cells - KCs) downstream from the antenna lobe.507
The MB is believed to store odor codes that serve as a memory, allowing the moth to recognize odors.508
Connections in the MB are plastic.509
Lateral horn (LH): A collection of neurons which receives input from the AL and sends inhibitory output510
to the MB. One of its roles is to enforce sparse firing in MB neurons.511
Receptor neuron (RN): These neurons respond to odors (volatiles) at the antennae and stimulate the512
antenna lobe. RNs respond to different, distinct odors.513
Glomerulus: The antenna lobe is divided into about 60 glomeruli, each of which is a self-contained514
collection of neurons (projection and lateral), innervated by RNs that respond to particular odors.515
Projection neuron (PN): Each glomerulus contains projection neurons, whose output innervates the KCs516
and also the lateral horn, but not other glomeruli in the AL, ie they are feed-forward only. Most PNs start517
in one glomerulus and are excitatory. A few PNs arborize in several glomeruli and are inhibitory (we refer518
to inhibitory PNs as “QNs”). Each glomerulus initiates about five PNs.519
Lateral neuron (LN): Each glomerulus contains lateral neurons, which innervate other glomeruli in the520
AL. LNs are inhibitory. One function is competitive inhibition among glomeruli. Another function is gain521
control, ie boosting low signals and damping high signals.522
Kenyon cell (KC): Neurons in the calyx of the MB. These have very low FRs, and tend to respond to523
particular combinations of PNs. KCs respond sparsely to a given odor. There are about 4000 KCs, ie a524
two-orders-of-magnitude increase over the number of glomeruli. Each KC synapses with about ten PNs.525
Connections into and out of KCs are plastic.526
Extrinsic neuron (EN): A small number of neurons downstream from the KCs. ENs are thought to be527
“readout” neurons. They interpret the odor codes of the KCs, deciding to eg “ignore”, “approach”, or528
“avoid”.529
Firing rate (FR): The number of spikes/second at which a neuron fires. Typically FRs are counted using530
a window (eg 500 ms). The moth’s response to odor stimulations is episodic, with FR spikes in FR and531
rapid return to spontaneous FRs. Neurons respond to relative changes in FR, rather than to raw magnitude532
changes. A neuron’s relative change in FR is scaled by its spontaneous FR (see section 4.5 below).533
Octopamine: A neuromodulator which stimulates neural firing. The moth spritzes octopamine on both the534
AL and MB in response to sugar, as a feedback reward mechanism. Dopamine has a similar stimulating535
effect on both AL and MB, but it reinforces adverse rather than positive events.536

4.3 Component networks and their Network Model representations537

This subsection offers a more detailed discussion of the constituent networks in the biological AL-MB,538
and details about how they are modeled in our Network Model.539

4.3.1 Antennae and receptor neurons540

The Antennae receptors, activated by chemical molecules in the air, send excitatory signals to Receptor541
Neurons (RNs) in the AL. Several thousand antennae converge onto 60 units (glomeruli) in the AL Nagel542
and Wilson (2011). All the receptors for a given atomic volatile converge onto the same glomerulus in the543
AL, so the glomeruli each have distinct odor response profiles Deisig et al. (2006). Since natural odors are544
a blend of atomic volatiles, a natural odor stimulates several units within the AL Riffell et al. (2009b).545

This is a provisional file, not the final typeset article 14



Delahunt et al. Biological Mechanisms For Learning

Our model does not explicitly include antennae. Rather, the first layer of the model consists of the RNs546
entering the glomeruli. Though ∼500 RNs feed a given glomerulus, the model assumes one RN. The547
benefit of many RNs converging appears to be noise reduction through averaging Olsen et al. (2010). This548
can be simulated by one RN with a smaller noise envelope.549

Each glomerulus’ RN has a spontaneous FR and is excited, according to random weights, by odor stimuli.550

4.3.2 Antenna lobe and projection neurons551

The AL is fairly well characterized in both structure and dynamics, with a few important gaps. It contains552
about 60 glomeruli, each a distinct unit which receives RN input and projects to the KCs via excitatory553
PNs. The same PN signal also projects to the LH Bazhenov and Stopfer (2010). The AL, unique among554
the networks, has inhibitory lateral neurons (LNs) Wilson and Laurent (2005), the only neurons that are555
not strictly feed-forward. (There is some evidence of excitatory LNs, eg Olsen et al. (2008); the Network556
Model excludes this possibility.) The LNs act as a gain control on the AL, and also allow odors to mask557
each other by inhibiting other glomeruli’s RNs Olsen and Wilson (2008); Hong and Wilson (2015). It is558
not known whether LNs also inhibit PNs and LNs. Based on calibrations to in vivo data, in Network Model559
LNs inhibit all neuron types (cf section 3.1). Thus each glomerulus contains dendrites (ie outputs) for PNs560
and LNs, and axons (ie inputs) for RNs and LNs, as shown in Figure 6.561

Each glomerulus does the following: Receives RN input from the antennae receptors upstream; inhibits562
other glomeruli within the AL via LNs; and sends excitatory signals downstream via Projection Neurons563
(PNs).564

In general, each PN is innervated in a single glomerulus. In moths, there are ∼5 PNs rooted in each565
glomerulus (60 glomeruli, ∼300 PNs). The Network Model assumes all PNs from a given glomerulus carry566
the same signal (because they share the same glomerulus and therefore inputs, and perhaps also because of567
ephaptic binding) Sjoholm (2006).568

Glomeruli also initiate pooled Inhibitory Projection Neurons (QNs) that send inhibitory signals569
downstream to the KCs.570

The AL contains a powerful macro-glomerulal complex (MGC), which processes pheromone. Because571
pheromone response has fundamentally different dynamics than food odor response Jefferis et al. (2007),572
the model ignores it. Only the glomeruli associated with non-pheromone (food) odors are modeled.573

Connections in the AL are not plastic with long-term persistence Dacks et al. (2012). While some574
evidence of short-term plasticity exists, the Network Model ignores this option.575

4.3.3 Lateral horn576

The LH receives input from the PNs. It then sends an inhibitory signal to the KCs. This inhibition from577
the LH appears to ensure that the KCs fire very sparsely and thus act as coincidence detectors for signals578
from the AL Sjoholm (2006); Lin et al. (2014); Gruntman and Turner (2013).579

The LH is also suspected of containing a parallel system for processing certain intrinsically-known580
odors in short-cut fashion (labeled lines) Luo et al. (2010). Since this parallel system is (by definition) not581
involved with learning, the Network Model ignores it. The LH is modeled solely as a simple sparsifying582
inhibition on the KCs.583

(Note: The locust and honeybee, which have more complex olfactory systems and different use-cases in584
terms of odor processing, have a time-oscillating depolarization mechanism (local potential fields, LPF)585
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Perez-Orive et al. (2002) which serves a similar purpose to LH inhibition in the moth. LPF oscillations are586
absent in the moth Martin et al. (2011).)587

4.3.4 Mushroom body and Kenyon cells588

The KCs (∼4000) in the MB are believed to encode odor memories in a high-dimensional, sparse space589
Turner et al. (2008). Odors with no meaning to the moth still have non-zero codes in the KCs.590

KCs receive excitatory input from the PNs and inhibitory input from QNs, both of which vary greatly591
between KCs, since each KC is innervated by only ∼10 PNs Martin et al. (2011). The connection map592
appears to be random Caron et al. (2013). The KCs also receive generalized damping inhibition from the593
LH. (There is some evidence in drosophila of an MB→MB global inhibitory neuron Lin et al. (2014), with594
the same essential effect as LH inhibition; the Network Model excludes this possibility.) KCs fire very595
sparsely, generally respond to only a single odor, and are silent absent that odor Honegger et al. (2011).596
KCs are treated as noise-free. Their output is an excitatory signal sent to the extrinsic neurons (ENs)597
Campbell et al. (2013).598

In addition to olfactory input, the KCs receive input signals from other parts of the moth (eg hearing)599
Sjoholm (2006). Because the Network Model targets olfactory learning, it ignores these other inputs and600
uses a reduced number of KCs (∼2000 instead of ∼4000).601

The synaptic connections in the MB (PNs→KCs, QNs→KCs, and KCs→ENs) are plastic, ie they can be602
modified during training Menzel and Manz (2005). The generalized inhibition from LH→KCs is modeled603
as non-plastic (actual physiology is not known). This LH inhibition is modeled as a global damping term604
on KCs, giving dynamics equation equivalent to the Pitt- McColloch approximation McCulloch and Pitts605
(1943) as used in Bazhenov et al. (2013); Peng and Chittka (2017); Mosqueiro and Huerta (2014); Huerta606
and Nowotny (2009).607

4.3.5 Extrinsic neurons608

Though located in the lobes of the MB, here ENs are not considered part of the MB, which is taken to be609
synonymous with the KCs. ENs are few in number compared to the KCs (∼10s ) Campbell et al. (2013);610
Hige et al. (2015). They are believed to be “readout” neurons, that interpret the KC codes as actionable611
signals (eg “approach”, “avoid”) Masse et al. (2009). We assume that ENs trigger actions when their output612
FRs exceed some threshold.613

We define Learning as: Permanently boosting EN responses beyond their naive (untrained) level, so614
that EN responses to reinforced stimuli can consistently exceed an action-triggering threshold. This is615
tantamount to modifying the moth’s behavior.616

4.3.6 Octopamine (reward circuit)617

A large neuron delivers octopamine to the entire AL and MB, in response to positive stimuli, eg sugar at618
the proboscis. It acts as a reward feedback to the system. A similar neuron delivers dopamine to the AL and619
MB in response to negative stimuli, and acts as an aversive feedback signal Dacks et al. (2012). Learning620
does not occur without octopamine (or dopamine) Hammer and Menzel (1998).621

Despite their opposite reward values, both octopamine and dopamine act in the same way when sprayed622
on a neuron: They increase the neuron’s general tendency to fire Riffell et al. (2012). In the Network Model623
this effect is modeled as making a neuron more responsive to excitatory inputs (eg from odors and RNs)624
and less responsive to inhibitory inputs (eg from LNs). Details of octopamine’s effects if any on particular625
neural types are not well-characterized. In the Network Model octopamine directly affects RNs and LNs626
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but not PNs in the AL (cf section 3.1); has no direct effect on KCs or ENs (though there are strong indirect627
effects); and has no effect on the LH inhibitory signal.628

It is unclear whether octopamine delivery to both the MB and AL is necessary and sufficient for learning629
Hammer and Menzel (1998); Dacks et al. (2012). The Network Model assumes that octopamine controls an630
“on/off” switch for Hebbian growth, ie there is no plasticity in the MB (and therefore no learning) without631
octopamine.632

4.4 Network Model model description633

This section describes our Network Model model in detail. It covers the firing rate measure used to634
compare model output to in vivo data; model dynamics; plasticity and other details; model parameters; and635
moth generation. All coding was done in Matlab. Computer code for the Network Model in this paper will636
be found at:637
https://github.com/charlesDelahunt/SmartAsABug638

4.4.1 Model dynamics639

Our Network Model uses standard firing rate dynamics Dayan and Abbott (2005) (chapter 7), evolved640
as stochastic differential equations Higham. (2001). We use a firing rate model for two reasons. First,641
it is the simplest model able to both capture the key response and learning dynamics of the moth, and642
also allow calibration to our in vivo datasets. Our in vivo datasets are spike trains and thus admit use of643
an integrate-and-fire or Izhikevich model; but at the cost of more parameters, higher complexity, and644
longer simulation times, without (in our eyes) commensurate benefit. Second, and importantly, we wish to645
apply our results to engineered NNs, which makes a firing rate model the natural choice due to its close646
similarities to NNs.647

The firing rate model is formulated as follows:648
Let x(t) = firing rate (FR) for a neuron. Then649

τ
dx

dt
= −x+ s(Σwiui) = −x+ s(w · u), where (3)

w = connection weights;650
u = upstream neuron FRs;651
s() is a sigmoid function or similar.652

653

PN dynamics are given here as an example. Full model dynamics are given in SI. PNs are excitatory, and654
project forward from AL→MB:655

τ
dP

dt
= −P + s(P̃) + dWP where (4)

W(t) = brownian motion process;656
P̃ = −(1− γo(t)MOP )*MLP*uL + (1 + o(t)MOP )*MRP*uR;657
MOP = octopamine→PN weight matrix (diagonal nG× nG);658
MLP = LN→PN weight matrix (nG× nG with trMLP = 0);659
MRP = RN→PN weight matrix (diagonal nG× nG);660
o(t) indicates if octopamine is active (o(t) = 1 during training, 0 otherwise).661
uL = LN FRs, vector nG× 1;662
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uR = RN FRs (nG× 1);663
γ = scaling factor for effects on inhibition.664

4.4.2 Discretization665

The discretization uses Euler-Maruyama (E-M), a standard step-forward method for SDEs Higham.666
(2001).667
Euler (ie noise-free): xn+1 = xn + ∆tf(xn)668
Euler-Maruyama: xn+1 = xn + ∆tf(xn) + ε randn(0,1)

√
∆t, where ε controls the noise intensity.669

4.4.3 Convergence670

Timestep ∆t was chosen such that noise-free E-M evolution gives the same timecourses as Runge-Kutta671
(4th order), via Matlab’s ode45 function. ∆t = 10 mSec suffices to match E-M evolution to R-K in672
noise-free moths. Values of ∆t ≤ 20 mSec gives equivalent simulations in moths with AL noise calibrated673
to match in vivo data. Values of ∆t ≥ 40 mSec show differences in evolution outcomes given AL noise.674

4.4.4 Plasticity675

The model assumes a Hebbian mechanism for growth in synaptic connection weights Hebb (1949);676
Cassenaer and Laurent (2007). That is, the synaptic weight wab between two neurons a and b increases677
proportionally to the product of their firing rates (“fire together, wire together”): ∆wab(t) ∝ fa(t)fb(t).678
Thus, synaptic plasticity is defined by:679

∆wab(t) = γfa(t)fb(t), where γ is a growth parameter. (5)

There are two layers of plastic synaptic weights, pre- and post-MB: AL→MB (MP,K ,MQ,K), and680
MB→ENs (MK,E) . Learning rate parameters of the Network Model were calibrated to match experimental681
effects of octopamine on PN firing rates and known moth learning speed (eg 4 - 8 trials to induce behavior682
modification) Riffell et al. (2012). The Network Model does not decay unused synaptic weights. Training683
does not alter octopamine delivery strength matrices (MO,*). That is, the neuromodulator channels are not684
plastic (unlike, for example, the case in Grant et al. (2017)).685

4.4.5 Odor and octopamine injections686

Odors and octopamine are modeled as hamming windows. The smooth leading and trailing edges ensures687
low stiffness of the dynamic ODEs, and allows a 10 mSec timestep to give accurate evolution of the SDEs688
in simulations.689

4.4.6 Training690

Training on an odor consists of simultaneously applying stimulations of the odor, injecting octopamine,691
and “switching on” Hebbian growth. Training with 5 to 10 odor stimulations typically produces behavior692
change in live moths.693

4.5 Firing rate measure694

To compare PN firing rate statistics from in vivo experiments and from Network Model simulations695
(ie model calibration), we use a measure of firing rate (FR) based on Mahalanobis distance, similar to696
the measure DF

F common in the literature Campbell et al. (2013); Hong and Wilson (2015); Turner et al.697
(2008); Silbering and Galizia (2007). The premise is that neurons downstream respond to a ±1 std change698
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in FRs equally (modulo different connection weights), independent of the sometimes large (up to 40x)699
magnitude differences in the raw spontaneous FRs of different neurons. The FR measure is defined as700
follows:701

1. Each PN has a spontaneous firing rate (FR) with a gaussian noise envelope.702

2. PNs with FR < 1 spike/sec are ignored, on the assumption that such PNs represent artifacts of703
experiment (also, the gaussian noise assumption fails). About 10% of PNs in experimental data fall in704
this category.705

3. Output FR activity of PNs is measured as M(t) = distance from mean spontaneous FR, in units of706
time-varying std dev of spontaneous FR (ie Mahalanobis distance): Let707
F (t) = raw firing rate (spikes per second).708
S(t) = spontaneous firing rate (no odor).709
µS(t) = moving average of S (no odor).710
µ̄S(t) = smoothed estimate of the moving average µS, eg a quadratic or spline fit.711
σS(t) = standard deviation of S, calculated using S − µ̄S values within a moving window centered on712
t.713
σS(t) and µS(t) are typically steady absent octopamine, but are often strongly modulated by oc-714
topamine.715
Then the measure of FR activity M is:716

717

M(t) =
F (t)− µ̄S(t)

σS(t)
(6)

4. M is related to the measure DF
F :718

DF
F = ∆F

F = F (t)−µS
µS , ie DF

F is change in FR, normalized by spontaneous FR. The key difference719

between M and DF
F is whether or how σS is estimated, due to varying exigencies of experiment. Our720

experimental data allow reasonable estimates of σS and µS. Network Model simulations produce very721
good estimates, since computer models are more amenable to repeated trials than live moths.722

4.6 Model parameters723

There is a risk, when modeling a system, of adding too many free parameters in an effort to fit the system.724
Fewer free parameters are better, for the sake of generality and to avoid overfitting. Conversely, we wish725
to reasonably match the physiological realities of the system. Because the key goal of this paper was to726
demonstrate that a simple model, in terms of parameters and structure, can reproduce the learning behavior727
of the AL-MB, we made efforts to minimize the number of free parameters. For example, neuron-to-neuron728
connections in the model are defined by their distributions, ie two parameters each. These are (usually)729
distinct for different source-to-target pairs (eg LN→RN, LN→LN, etc).730
Some mean and std dev parameters for distributions are shared among different neuron types (eg LNs, PNs,731
and QNs all share the same variance scaling parameter).732

4.6.1 Parameter list733

The model has in total 47 free parameters:734
1. Structure: 5 (eg number of neurons in each network)735
2. Dynamics: 12 (noise: 2. decay and sigmoid: 3. Hebbian growth: 6. misc: 1).736
3. Spontaneous RN FRs: 3.737
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4. Connection matrices: 27 (controlling non-zero connection ratios: 5; synaptic weights (eg MP,K ,MR,P ):738
means 12, std devs 4; octopamine weights (eg MO,R,MO,P ): means 6, std devs 2).739

4.6.2 Dynamics parameters740

The differential equations of all neuron types share the same decay rate, set to allow return to equilibrium741
in ∼1 second, consistent with in vivo data. Neurons also share parameters of the sigmoid function within742
the differential equation. Noise added via the SDE model is controlled by a single parameter ε, the same743
for all neuron types. It is determined by empirical constraint on σS

µS , as shown in column 2 of Figure 2.744

4.6.3 Connection matrix generation745

Connection weight matrices (eg MP,K etc) are generated in a standard way, from Gaussian distributions746
with std dev σ defined proportional to the mean µ, using a scaling factor v:747
M∗,∗ ∼ N(µc, σ

2
c ) where µc depends on the neuron types being connected, and σc = vµc. Many connection748

types typically share the same v.749

A special feature of the AL is that all the neurons in a given glomerulus share a common environment.750
For example, all the neurons, of whatever type, in glomerulus A will share the same strong (or weak) LN751
axon from glomerulus B. Thus, the RN, LN, and PNs in a given glomerulus are all correlated. In addition,752
neuron types are correlated. To model this dual set of correlations, connection matrices in the AL are753
generated as follows. As an example, consider LN connection matrices in the AL:754

1. A glomerulus-glomerulus connection matrix ML,G is created, which defines LN arborization at the755
glomerular level.756

2. This connection matrix is multiplied by a neural type-specific value to give ML,P ,ML,L, and ML,R757
connection matrices. This is particularly important when tuning the various inhibitory effects of LNs758
on RNs, PNs (QNs), and LNs.759

3. Sensitivity to GABA: A separate variance factor determines glomerular sensitivity to GABA (ie760
sensitivity to inhibition). This is tuned to match data in the literature Hong and Wilson (2015), and761
applies to LN-to-PN(QN) (ie ML,P ) connections only.762

The goal of this two-stage approach is to enforce two types of similarity found in the AL: (i) Connections763
to all neurons within a single glomerulus are correlated; and(ii) connections to all neurons of a certain type764
(LN, PN, RN) are correlated.765

Due to constraints of the biological architecture there are many zero connections. For example, about766
85% of entries in the AL→MB weight matrix are zero because MB neurons connect to only∼10 projection767
neurons Caron et al. (2013). All MB→EN weights are set equal at the start of training. Training leads768
rapidly to non-uniform distributions as inactive connections decay and active connections strengthen.769

4.6.4 RN spontaneous firing rates770

RNs in the glomeruli of the AL have noisy spontaneous firing rates Bhandawat et al. (2007). The Network771
Model simulates this by assigning spontaneous firing rates to RNs. These spontaneous firing rates are772
drawn from a gamma distribution plus a bias:773
γ(x|α, β, b) = b + βα

Γ(α)x
α−1e−βx, where α, β are shape and rate parameters, and Γ(·) is the Gamma774

function.775
This can be thought of as a source of energy injected into the system, at the furthest upstream point (absent776
odor). Other energy sources are odor signals and octopamine. The spontaneous firing rates of all other777
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neurons in the Network Model are the result of their dynamics as RN spontaneous FRs propagate through778
the system.779

4.7 Discrepancies between biology and model780

There are some known discrepancies between our Network Model and the moth AL-MB. These are listed781
below.782

4.7.1 Connection weight distributions783

This model version uses gaussian distributions to generate initial connection weights. However, moths784
used in live experiments are older and thus presumably have modified PN→KC and KC→EN connection785
weights. If this modification was strong, we might expect the connection weight distributions to tend786
towards a scale-free rather than gaussian distribution Barabasi and Albert (1999). This represents an787
unknown discrepancy between structure parameters of the live moths used in experiments vs the model.788

4.7.2 Hebbian pruning789

The Network Model contains no pruning mechanism to offset, via decay, the Hebbian growth mechanism.790
Such pruning mechanisms are common in nature, so it is reasonable to suppose that one might exist in the791
AL-MB. The moth has inhibitory as well as excitatory feed-forward connections from AL to MB. In the792
Network Model, pruning is functionally replaced by Hebbian growth of QN→KC inhibitory connections,793
which act to inhibit KCs and thus offset the growth of excitatory PN→KC connections (this does not794
directly offset KC→EN Hebbian growth). Thus omitting a separate Hebbian decay mechanism is a matter795
of convenience rather than a match to known biology.796

4.7.3 Non-olfactory input to KCs797

In addition to olfactory input, the KCs receive signals from other parts of the moth, eg hearing. Because798
this model targets only olfactory learning, it ignores these other inputs to the KCs, and reduces the total799
number of KCs (from ∼4000 to ∼2000).800

4.7.4 Number of QNs801

There are believed to be about 3-6 QNs projecting from the AL to the MB. This model sets their number802
at about 15. The reason is that, absent a Hebbian pruning system in the model, the QNs function as the803
brake on runaway increases in KC responses due to Hebbian growth. So the increased number of QNs is a804
compensation for the lack of a weight-decay system.805

4.7.5 Number of ENs806

This model version has only one EN, since its goal is to demonstrate simple learning. The moth itself807
possesses multiple ENs.808

4.7.6 LH inhibition809

The LH→KC inhibitory mechanism used in this chapter is modeled as a time-invariant global signal,810
delivered equally to all KCs. This simplifies the model parameter space while retaining the essential811
functionality of the LH. A more refined version of LH→KC inhibition might vary in strength according to812
PN output, since the same PN signals that excite the KCs also excite the LH. The actual dynamics of the813
AL→LH→KC linkage are not known, beyond the principle that inhibition from the LH sparsifies the KC814
codes and makes the individual KCs act as coincidence detectors.815
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4.8 in vivo neural recordings data816

Model parameters were calibrated by matching Network Model performance to in vivo electrode readings817
from the ALs of live moths. The various performance metrics are described in Results.818

Electrode data was collected by the lab of Prof Jeff Riffell (Dept of Biology, UW). It consists of819
timecourses of PN firing rates measured via electrode in the AL of live moths, during a variety of regimes820
including:821

1. Series of 0.2 sec odor stimulations delivered without octopamine. These experiments gave data re PN822
response to odor relative to PN spontaneous (baseline) FRs, absent octopamine.823

2. Series of 0.2 sec odor stimulations delivered coincident with sugar reward (which delivers octopamine).824
This gave data re how PN odor response is modulated by octopamine, relative to octopamine-free825
spontaneous FR. See Figure 7A.826

3. Series of 0.2 sec odor stimulations, delivered first without and then coincident with an octopamine wash827
applied to the AL. This gave data re how PN spontaneous FR and PN odor response are modulated by828
octopamine. See Figure 7B.829

In most cases the applied odor consisted of a collection of 5 volatiles, which taken together stimulate many830
glomeruli in the AL. It was selected to ensure sufficient odor-responsive PNs, such that inserted electrodes831
would detect interesting (ie responsive) PNs. Further details re in vivo data collection can be found in832
Shlizerman et al. (2014) and in SI. Example timecourses are shown in Figure 7.833

4.9 Simulation setup834

For Network Model learning experiments, the time sequence of events for simulations, shown in Figure835
1, is as follows:836

1. A period of no stimulus, to assess baseline spontaneous behavior.837

2. Four odor stimuli are delivered, 16 stimulations each (two odors were used in MB sparseness838
experiments).839

3. A period of control octopamine, ie without odor or Hebbian training.840

4. The system is trained (odor + octopamine + Hebbian mechanism) on one of the odors.841

5. A period of no stimulus, to assess post-training spontaneous behavior.842

6. The odors are re-applied (16 stimulations each), without octopamine, to assess effects of training on843
odor response.844
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Figure 1. AL-MB overview. On the left is a system schematic: Chemical sensors (RNs) excite a noisy
pre-amp network (AL), which feeds forward to a plastic sparse memory layer (MB), which excites readout
(decision) neurons (ENs). Green lines show excitatory connections, red lines show inhibitory connections
(LH inhibition of the MB is global). Light blue ovals show plastic synaptic connections into and out of the
MB.
On the right are neuron timecourse outputs from each network (typical simulation) with time axes aligned
vertically. Timecourses are aligned horizontally with their regions-of-origin in the schematic. The AL
timecourse shows all responses within ± 2.5 std dev of mean spontaneous rate as medium blue. Responses
outside this envelope are yellow-red (excited) or dark blue (inhibited). MB responses are shown as binary
(active/silent). Timecourse events are as follows: (1) A period of no stimulus. All regions are silent. (2)
Two odor stimuli are delivered, 3 stimulations each. AL, MB, and ENs display odor-specific responses. (3)
A period of control octopamine, ie without odor or Hebbian training. AL response is varied, MB and EN
are silent. (4) The system is trained (octopamine injected) on the first odor. All regions respond strongly.
(5) A period of no stimulus. All regions are silent, as in (1). (6) The stimuli are re-applied. The AL returns
to its pre-trained activity since it is not plastic. In contrast, the MB and EN are now more responsive to the
trained odor, while response to the untrained odor is unchanged. Green dotted line in the EN represents a
hypothetical “action” threshold. The moth has learned to respond to the trained odor.
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Figure 2. In vivo firing rate data and model calibration: Comparison of PN firing rate activity from
in vivo data and simulations. A: Histograms and CDFs of in vivo data and simulations. Col a: mean
spontaneous FRs µs.
Col b: σs/µs of spontaneous FRs, a measure of noisiness of a PN. Col c: odor response, measured as
distance from µs in σs units. Distance > 2σs implies a strong activation/inhibition. Col d: odor response
during octopamine, in σs units distance from µs. Note that PN responses are broadened (ie more PNs
are strongly activated or inhibited). The dotted line in the CDF inset is the same as the CDF of the odor
response without octopamine, to show the broadening towards both extremes. Col e: change in mean
spontaneous FRs due to octopamine, measured in σs units distance from (non-octopamine) µs. Some PNs
are excited, some are inhibited.
B: Activity of PNs indexed by increasing spontaneous FR. Blue lines = mean spontaneous FRs µs (cf col
1). Shaded regions = σs, 2σs envelopes (cf col 2). Solid red dots = odor response FRs (cf col 3). Hollow red
dots = odor response FRs during octopamine (cf col 4). Red lines show the change in odor response FRs
due to octopamine (cf broadened response). Black stars (*) = spontaneous FRs during octopamine (cf col
5). In panel A cols 3, 4, 5, the x-axes are expressed in units of σs, while in panel B the y-axis measures raw
spikes/sec FR.
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Figure 3. KC responses to odor during training: KCs respond sparsely to odor pre- and post-training, ie
absent octopamine (blue and green dots and curves). Octopamine induces transient increased responsivity
(red dots and curves). Training results in permanent increases in response to the trained odor, but no
increase in response to control odor (green dots and curves).
A: KC response to an odor before, during, and after training. x-axis: indexed KCs (500 shown). y-axis:
consistency of response (in %). The plots are for odor 1 as the trained odor (ie same data as panel B). Blue
= pre-training (no octopamine). Red = during training (with octopamine); note the heightened transient
response. Green = post-training (no octopamine). There is a permanent increase in the number of KCs that
respond to the trained odor.
B: Response rate vs. percentage of active KCs for trained and control odors before, during, and after
training.
x-axis: percentage of KCs responding at the given rate. y-axis: consistency of response (in %). Blue =
pre-training. Red = during octopamine (transient). Green = post-training. The LH plot shows odor 1 as the
reinforced odor. The scatterplots in (A) correspond to the three curves in this plot. Note that the permanent
KC response curve shifts up and to the right (blue→green) in the trained odor, ie more KCs respond to
the odor (right shift) and they respond more consistently (upward shift). The RH plot shows odor 2 as a
control. The control’s permanent KC response curve does not shift.
C: As (B) above, but in this experiment odor 1 is now the control (LH plot), and odor 2 is reinforced (RH
plot). In this case, the response curve of odor 2 (reinforced) shifts to the right (blue→green), while the
response curve of odor 1 (control) is unchanged.
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Figure 4. Effect of training on EN FRs: A: Typical timecourse of EN responses from an experiment with
a single moth. First, 16 stimulations of each odor were delivered, to establish naive odor responses. Note
EN response variability due to noise in the system, especially in the AL. Next, the moth was trained on the
first (blue) odor trained over 2 sessions (10 stimulations), by delivering odor and octopamine concurrently
This timecourse corresponds to the {odor, #sessions} pair in the first column in panel B, at index 2 on the
x-axis. Octopamine was then withdrawn, and the four odors were again delivered in series of stimulations,
to establish post-training changes in EN response. The long green line represents a hypothetical trigger
threshold, such that EN response > threshold would induce a distinct behavior.
B: EN response changes due to training, aggregated results with 11 noise realizations for each {odor,
#sessions} pair. Each column shows results of training a given odor, color coded: blue, purple, red, green.
x-axis = number of training sessions.
First row: The y-axis measures percent change in EN FR. The line shows mean percent change. The error
bars show ±1, 2 stds.
Second row: The y-axis measures percent changes in EN response, relative to the trained odor (ie subtracting
the trained odor’s change from all odors). This shows how far each control odor lags behind the trained
odor. The line shows mean percent lag. The error bars show ±1, 2 stds.
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Figure 5. Effects of sparsity on learning and EN reliability Results for a typical experiment on a moth
with two odors. A: EN responses timecourses for two odors, at varying levels of KC activation (a, b: <1%.
c, d: 5 to 15%. e, f: 20 to 45%. Order of events: 3 stimulations of each odor as baseline, train on first odor
(only one session shown), then 3 stimulations each post-training. At very sparse levels (a, b) training is
focused but odor response is not reliable. At low sparsity levels (e, f) training is unfocused, boosting EN
response to control odor and to background noise.
B: Two Figures of Merit (FoMs) plotted against MB sparsity. Low KC activation (high sparsity) correlates
with well-focused learning, but low odor response SNR. High KC activation (low sparsity) correlates with
poorly-focused learning, but high odor response SNR. The FoMs are each normalized for easier plotting.
y-axis: Blue data: µ(f)

σ(f) , a measure of odor EN response SNR, where f = EN odor response. Red data:
µ(fT )
µ(fC) , a measure of learning focus, where µ(fT ) = mean EN post-training response to reinforced odor;
µ(fC) = mean EN post-training response to control odor (values are thresholded at 1 for plotting). A high
value indicates that increases in EN response due to training were focused on the trained odor; low values
indicate that irrelevant signal (FC) was also boosted by training. The points are experimental data, the
curves are cubic fits. Vertical green lines indicate the 5 - 15% sparsity region, typical in biological neural
systems.
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Figure 6. Schematic of AL glomeruli. Detail of neural connections within a glomerulus. Red = inhibitory, green
= excitatory, blue = increases responsiveness. RNs enter from the antennae. LNs enter from other glomeruli; one full
LN is shown. It is not known if octopamine modulates LNs and PNs (see section 3.1).
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Figure 7. Time series of PN firing rates from in vivo experiments. x-axis = time, y-axis = FR. Blue lines =
mean spontaneous rate, shaded regions = ±1 and 2 std. Red dots are odor responses. Green dots are response to
control (mineral oil).
A: PN response, given odor plus coincident sugar reward, ie plus octopamine (time series for PNs with odor only are
similar, but with less strong odor responses). Top row: unresponsive to odor. Middle row: excited response to odor.
Bottom row: inhibited response to odor.
B: PNs with octopamine wash added in mid-experiment, then rinsed away (duration shown by black line). Octopamine
can alter (up, down, or not at all) the spontaneous FR and/or the odor response, so there are 9 possible modulation
regimes. This grid of timecourses shows a typical PN from each regime. Top row: spontaneous FR in unaffected.
Middle row: spontaneous FR is boosted. Bottom row: spontaneous FR is inhibited. First column: odor response is
unaffected. Second column: odor response is boosted. Third column: odor response is inhibited.
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