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Abstract

A key task in ML is to optimize models at var-
ious stages, e.g. by choosing hyperparameters
or picking a stopping point. A traditional ML
approach is to apply the training loss function
on a validation set to guide these optimizations.

However, ML for healthcare has a distinct
goal from traditional ML: Models must per-
form well relative to specific clinical require-
ments, vs. relative to the loss function used
for training. These clinical requirements can
be captured more precisely by tailored metrics.
Since many optimization tasks do not require
the driving metric to be differentiable, they al-
low a wider range of options, including the use
of metrics tailored to be clinically-relevant.

In this paper we describe two controlled ex-
periments which show how the use of clinically-
relevant metrics provide superior model opti-
mization compared to validation loss, in the
sense of better performance on the clinical task.

The use of clinically-relevant metrics for opti-
mization entails some extra effort, to define the
metrics and to code them into the pipeline. But
it can yield models that better meet the central
goal of ML for healthcare: strong performance
in the clinic.

Keywords: Metrics; healthcare; optimization

Data and Code Availability The Loa loa
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1. Introduction

Metrics are fundamental to optimizing machine learn-
ing (ML) algorithms, including tasks such as hy-
perparameter optimization and selection of stopping
point for training. Certain metrics inherited from
ML, e.g. cross-entropy loss, are engrained in ML con-
vention, are straight-forward to implement thanks to
well-curated libraries, and are often highly effective.
In addition, using the same loss function on train and
validation sets is automatic in ML frameworks such
as PyTorch. As a result these metrics are embedded
in the practice of ML as a standard way to optimize
models, on the implicit assumption that they will lead
to an optimization that performs well in the clinic.

However, in ML for health care, performing well
relative to the training loss function is not a model’s
actual goal. Rather, the true goal of algorithms de-
veloped for medical use cases is to meet specifications
determined by clinical needs. These needs are char-
acterized by metrics that often diverge significantly
from standard ML metrics.

A clear example is object-level vs. patient-level
metrics: An algorithm is often trained at the object-
level - that is, the unit passed through the model
is a patch of a histology slide, a suspected parasite,
a thumbnail of an object of interest, etc, and al-
gorithm performance is optimized using metrics at
this level; in contrast the clinician cares about a pa-
tient, whose sample under test contains many objects.
There is necessarily a transform, usually non-linear,
from object-level results to patient-level results. For
example, the algorithm might evaluate several image
patches from a histology slide, then patient disposi-
tion is based on some function of the patch results.
A model optimized for maximum performance at the
object-level has no guarantee of optimal performance
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BEYOND VALIDATION LOSS

at the patient-level, because the metrics that define
good performance are different.

More generally, if a model is optimized according
to a Figure of Merit (FoM) that does not accurately
encode the clinical requirements, the model will not
attain a clinically-optimal state, because it is by def-
inition being directed towards some other optimum.
This is analogous to heading northwest when the ac-
tual destination is due north - “close” might work if
the problem is tractable enough, but for a difficult
problem it carries risk that the algorithm will fail to
meet the clinical requirements.

An optimized model certainly can (and arguably
should) be evaluated using metrics tailored to the
clinical use case requirements, both to guide overall
development and for final reporting. For a concrete
example see Delahunt et al. (2024). However, in this
case the impacts of the chosen optimization metrics
are already baked in prior to model evaluation.

In this paper, we examine the effect of applying
clinically-focused metrics earlier, during model opti-
mizations. We describe two controlled experiments
that demonstrate a clear benefit of applying metrics
that are closely tailored to use case-specific demands
to optimize a model, rather than relying on standard
flavors of ML metrics.

We distinguish this approach from the familiar
construction of loss functions, e.g. with form L =
Lo, + Lo, + L, where L,, are variants of losses like
cross-entropy (CE) and L, is a regularizer. Though
these can work well from an ML perspective, they
usually must be differentiable, and this constraint can
prevent tailoring them to specific, concrete clinical
performance requirements.

The approaches described are readily applicable to
any ML project, and are potentially valuable if the
FoMs defining clinical performance are different from
the loss functions that drive ML training (as is usually
the case). The approach requires two steps:

1. Accurately capture the clinical performance re-
quirements as a FoM that is a function of al-
gorithm outputs, by combining the {algorithm
outputs — patient disposition} function with the
clinical requirements (e.g. the minimum accept-
able patient-level specificity for deployment). A
valuable guide to metrics for health care tasks is
found in (Maier-Hein et al., 2022).

2. Inject this metric at the relevant stage to drive
the algorithm optimization or selection.

The next two sections of the paper describe the two
experiments, each in a Background-Methods-Result
structure. They are: (i) Optimizing hyperparame-
ters using a patient-level FoM rather than an object-
level FoM; and (ii) Choosing a stopping point for a
DNN model using clinically-relevant metrics rather
than the usual validation loss curve.

To clarify expectations, we note that the details of
the particular datasets and models are not important
for this paper. They are vehicles to illustrate the
topic of metric choices for algorithm optimization.

2. Experiment 1: Hyperparameter
optimization

This section describes an experiment comparing the
effects of a patient-level vs object-level loss function
as a driver of hyperparameter optimization. The de-
tails of the model are not important (they are de-
scribed in (Delahunt and et al., 2025)). The impor-
tant element is that an identical model architecture
(trained at the object-level) has hyperparameter op-
timization done in two ways: driven by patient-level
FoM or by object-level FoM.

2.1. Background

We consider an imaging device that looks at videos
of fresh blood in capillaries to diagnose Loa loa in-
fections by detecting motion of filariae in fresh blood
for the “Test and Not Treat” use case in Mass Drug
Administration (Kamgno et al., 2017). A clinically-
important issue arose during field trials: If the blood
in the capillary coagulates due to some delay in imag-
ing, the filariae cannot move so the motion detection
algorithm returns a potentially dangerous False Neg-
ative. For example images, see Figure 1. Therefore a
module to detect coagulation was required to return
a label (coagulated or not) for the patient.

2.2. Methods

For the Loa loa diagnosis task, the inputs are 7 videos
taken along the length of the capillary. For the co-
agulation task, 1 still frame is extracted from each
video, so the inputs are 7 frames (7 “objects”) per
patient.

An SVM (Pedregosa et al., 2011) acts on FFT
spectrum features (chosen because coagulated blood
acquires a “checkerboard” appearance) to give a
score to each video (“video-level”, “frame-level”, and
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BEYOND VALIDATION LOSS

Figure 1: Frames of blood capillary videos, normal
(top) and very coagulated (bottom). The
dataset contains a range of coagulations.

“object-level” are equivalent for this task). To assign
a patient-level label, the N video’s score is used (N
is a hyperparameter). So the SVM is trained at the
object-level to classify objects (videos) as coagulated
or not. But the required clinical output is a patient-
level classification, which is a non-linear function of
the object scores.

Model hyperparameters include SVM parameters,
feature selection parameters, and a few others. For
optimization we used the hyperopt library (Bergstra
et al., 2015), which is guided by the Tree of Parzen
Estimators method (Bergstra et al., 2011). Differen-
tiability is not required.

For this experiment, everything in the set-up is
kept fixed except for the choice of loss function to
drive the hyperopt optimization: in one case AUC
over videos is used, matching the object-level of the
model’s training'; in the other, AUC over patients is
used, matching the clinically-relevant output. (The
actual loss used by hyperopt is 1 - AUC.)

Results are reported for the validation sets in a
5-fold cross-validation. The different fold scores are
combined and made comparable using a novel (to our
knowledge) z-mapping technique. The method is de-
scribed in Appendix A.

2.3. Results

The crucial finding is that patient-level and object-
level optima are not correlated, and optimizing the
object-level metric, though perfectly sensible from a
ML perspective (since the model is trained at object-
level) leads to inferior patient-level performance. The

1. The SVM’s hinge loss is not visible. Our manual hinge loss
gave results similar to object-level AUC.

following figures illustrate this disconnect between
object-level and patient-level losses:

1. Figure 2 show the ROC curves for the best iter-
ation in the video-level run (on left) and for the
best iteration in the patient-level run (on right).
The video-level ROCs are very similar, but the
patient-level ROC is much better when patient-
level metrics drive the optimization.

2. Figure 3 A show the patient-level and object-
level AUC values for each iteration of the hy-
peropt run driven by patient-level AUC, with it-
eration order sorted by increasing patient-level
AUC. Note that the object-level AUCs are sim-
ply a cloud: optimizing patient-level AUC does
not optimize object-level AUC.

3. Figure 3 B shows the equivalent plot for the hy-
peropt run driven by object-level AUC, sorted
by increasing object-level AUC. As above (but
reversed), optimizing object-level AUC does not
optimize patient-level AUC.

4. Figure 3 C shows a scatterplot of patient-level
vs. object-level AUCs per iteration (from the
object-level run). Note the lack of correlation
between object- and patient-level results.

Thus, if the goal is to optimize clinical performance
it is best to drive hyperparameter optimization not
by the model’s loss function, but by a loss function
that more closely aligns with clinical requirements.
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Figure 2: Best ROC curves for patient-level (red) and
video-level (black). Per subplot, the two
curves are from the best hyperopt itera-
tion, as driven by: (left) object-level AUC,
(right) patient-level AUC. Patient-level
optimization gives much better patient-
level performance.
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Figure 3: Patient-level and video-level AUC values for different iterations of hyperopt.
Patient-level AUCs in green, video-level AUCs in blue.

AUC value.

iteration index, y-axis =

200 300 400 500 0.5 0.6 0.7 0.8 0.9

x-axis = sorted

A: Optimizer driven by patient-level AUC, iterations sorted by patient-level AUC values. B:
optimizer driven by video-level AUC, iterations sorted by video-level AUC values. C: Scatterplot
of patient-level vs video-level AUCs for data in subplot B. Note the lack of correlation between

the two performance metrics.

3. Experiment 2: Stopping point
optimization

3.1. Background

DNNSs are trained over several epochs, and an impor-
tant optimization task is to choose the best epoch’s
model for testing or deployment. The usual method
is to consult the loss curves for train and validation
sets, where the same loss function is applied to both
train and val sets. Then the final epoch (i.e. model) is
chosen based on the validation loss curve, e.g. where
it starts to increase, implying that overfitting has be-
gun. This is an effective method to choose the best
model in the narrow sense of performance as mea-
sured by the training loss function.

But clinical performance requirements are not, in
general, captured by the training objective. Although
the loss is often structured to generally reflect the
medical context, it is also often shaped by reasons of
convention, differentiability, or ease of implementa-
tion (e.g. the existence of built-in functions).

Therefore this experiment assesses whether the val-
idation loss curve is in fact an optimal guide to choos-
ing the best epoch in terms of performance on the
clinical task. We train a DNN for 40 epochs and then
plot, for each epoch, multiple FoMs: not just the val-
idation loss but also other metrics that more tightly
reflect the clinical use case. We also plot per-epoch

histograms of the validation exam scores to assess the
stopping points selected by each FoM.

As before, the details of the model are not impor-
tant (these are described in (Mehanian and et al.,
2025)). The important point is that an identical
model has its stopping point optimized in one of two
ways: with the usual validation loss curve, or with
clinically-relevant metrics along with per-epoch as-
sessment plots such as score histograms.

We consider the case of a DNN trained to dis-
tinguish twins vs singleton fetuses using blind (un-
guided) ultrasound sweep videos. This is clinically
important because twin pregnancies tend to be higher
risk and should be identified. The blind sweeps with
algorithms enable this diagnostic in low resource set-
tings where trained sonographers are not available.

3.2. Methods

The data consist of blind sweep ultrasound exams
collected in Zambia and the USA by a team led by
U. of North Carolina’s Global Women'’s Health group
(Pokaprakarn et al., 2022). Twins are the “positive”
class, singletons are the control.

A DNN architecture delivers an exam-level score.
It is trained in Pytorch (Paszke et al., 2019) and Py-
torch Lightning (Falcon and the PyTorch Lightning
team, 2019) with balanced cross-entropy loss. The
Pytorch library, as typical for ML frameworks, cal-
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BEYOND VALIDATION LOSS

culates the same CE loss on the validation set, and
produces a validation set loss curve. We plot 1 - val-
idation loss.

We also plot alternate metrics tailored to the clin-
ical goal. To generate these metrics requires some
extra effort. First, the exam scores must be saved
at each epoch, either via a custom callback function
during training, or by running each epoch’s model on
the validation set as inference. Then custom code is
needed to calculate metrics and generate plots. This
is a cost of extending optimization beyond built-in
ML functions. The following FoMs are plotted:

1. Validation loss returned by PyTorch (here, bal-
anced CE).

2. Standard area under the ROC curve (AUC).

3. 90% “sliver” AUC. The sliver AUC considers
only the subset of the AUC where specificity is
> 90%, i.e. the area under the ROC in the left-
most 1/10"" of the normal ROC. This FoM is
valuable because the minimum acceptable clini-
cal specificity (for this project) was 90%, so per-
formance in the entire righthand region of the
ROC is not clinically relevant.

The n% sliver AUC can be calculated by sum-
ming trapezoids over the operating points with
False Positive Rate between 0.0 and (1 —n/100),
normalized by (1 — n/100). For an example of
sliver AUC, see Figure 4. Code is provided in
Appendix B.

4. Sensitivity at 90% specificity. If the clinically-
acceptable specificity is known (here 90%), the
corresponding sensitivity is a scalar that directly
measures the model’s potential performance at a
clinically-relevant operating point.

5. Fisher distance, defined for two distributions by

|M1 —,u2|

where p;, 0; = means and standard
g1 + g9

deviations. We use right and lefthand std devs
which are useful for asymmetric distributions
(code is given in Appendix B).

We also plot, per epoch, some histograms and scat-
terplots, because these are useful for qualitative as-
sessment of what the models are doing relative to the
FoMs given above.

1. Scatterplots and histograms of scores, separated
by class.

2. Plots of sensitivity and specificity curves vs
threshold on scores.

3. Scatterplots of scores vs gestational age (GA).

1.0
ool /
0.6
0.4
0.2
0.0
0:0 0:2 0:4 0.‘6 0.‘8 1.‘0

Figure 4: Sliver AUC example: The blue ROC has
lower overall AUC than the red (0.9 vs
0.96), but it is stronger at high specifici-
ties and thus has a higher 90% sliver AUC
(in the grey column, 0.82 vs 0.77).

3.3. Results

The crucial finding is that, when these various FoMs
are calculated at each epoch on the validation set, the
validation loss curve suggests a substantially different
“best” stopping point than do the clinically-tailored
FoMs. In addition, the per-epoch scatterplots and
sensitivity-specificity indicate that the stopping point
suggested by the training loss is too early and will
likely give inferior results in the clinical task.

A 5-fold split was used for cross-validation pur-
poses, so b models were trained. Results are given
below for one of the 5 folds - all folds showed similar
behavior.

The disagreement between “best” stopping points
is seen in the per-epoch time-series of PyTorch’s val
loss and the alternate FoMs, shown in Figure 5 (the
negative of val loss is shown, so that for all FoMs
higher is better). The val loss maxes out at epoch 22,
while the the clinically-tailored FoMs keep steadily
increasing up to epoch 39. Specifically:
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1. The validation loss (using the training loss func-
tion) maxes out at epoch 22, then decreases in a
distinct though noisy way.

2. The standard AUC maxes out at around epoch
20, and shows no further change after this. That
is, standard AUC cannot distinguish between the
models of epochs 20 - 39.

3. The 90% sliver AUC shows steady increase up to
epoch 39, i.e. it argues for later epochs.

4. The “sensitivity at 90% specificity” FoM in-
creases until epoch 29, then mostly stays at this
maximum. So it argues for > 29 epochs.

5. The Fisher Distance matches the behavior of the
sliver AUC, steadily increasing to a maximum at
epoch 35.

The question now arises: Which stopping point is
in fact the best? The separation behavior of the per-
epoch models, for epochs {0, 3, 12, 22, 29, 35, 39}, are
shown in the scatterplots and histograms in Figure 6.
Epoch 22, despite having the best validation loss, has
poor separation compared to epochs 29 - 39.

The later epochs also show greater stability around
the clinically-relevant operating point, seen in the
per-epoch sensitivity and specificity plots of Fig-
ure 7. Stability is indicated by shallower slopes in the
two curves at the required operating point (> 90%
specificity), since this reflects greater robustness to
changes in operating point. Epoch 35 is strongest in
this regard.

An interesting effect specific to the particular
dataset /use-case is seen in Figure 8, which shows per-
epoch scatterplots of scores vs GA. Twin fetuses with
low GA, e.g. < 80 days, are much harder to classify
for biological reasons, and all epochs give lower scores
to low GA cases. However, the model at epoch 35
“sacrifices” these cases, giving them very low scores,
in order to further reduce singletons’ scores, ensur-
ing better overall separation. By contrast, epoch 22
has higher scores for low GA cases, but at the cost of
spread-out, higher scores for singletons. Thus, epochs
> 35 separate the two classes better, except for the
“lost cause” low-GA cases. This effect is germane to
the clinical use case, so the ability to notice it enables
better optimization for the clinic.

In summary: The standard validation loss curve
suggests stopping relatively early, but the clinically-
tailored FoMs, backed up by the behaviors in the per-
epoch assessment plots, indicate that training much

longer is better for the clinical task. This crucial in-
formation is not revealed by the validation loss curve.

4. Discussion

A key task in ML is to optimize of models at various
stages, e.g. by choosing hyperparameters or picking a
stopping point. A standard ML approach is to use the
training loss function to to guide these optimizations,
because these meet the differentiability requirements
of backprop and gradient descent, and also perhaps
because of convention and ease of use (e.g. with built-
in functions and libraries).

However, ML for healthcare is a distinct field from
traditional ML, and it has a distinct goal: The model
performance must meet rigorous clinical specifica-
tions. These demands can be captured more pre-
cisely by metrics customized to the clinical needs than
by the more usual ML objective functions. Since
many optimization tasks do not require differentia-
bility, they admit of a wider range of metric options.

In this paper we gave two examples of how met-
rics tailored to be clinically-relevant provide superior
model optimization, in the sense of better perfor-
mance on the clinical task (they give worse perfor-
mance in the sense of an ML-centric task definition).
This result is not surprising: To excel at a task, it
makes sense to tailor the optimization to that task.
For ML applied to health care, this requires moving
beyond the metrics and conventions inherited from
traditional ML.

This clinically-focused approach requires encoding
the specifics of the use case into usable Figures of
Merit: What metrics matter to clinical deployment,
and how the outputs of a model feed into a clinically-
relevant disposition (e.g. the object-level to patient
level transform).

The use of clinically-relevant metrics for optimiza-
tion entails some extra effort, to define appropriate
metrics and code them into the pipeline, but in re-
turn it can yield models that better meet the central
goal of ML for healthcare: Optimal performance in
the clinic.
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Figure 5: Figure of Merit time-series over training epochs. x-axis: epoch indices, y-axis: FoM value. L - R:
(1) -1 * Standard validation loss; (2) AUC; (3) 90% Sliver AUC; (4) Sensitivity at 90% specificity;
(5) Fisher distance. x-axis: epoch. y-axis: value (higher is better). Highest scores marked in red.
Clinically-relevant FoMs suggest much later stopping points than that of validation loss.
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Figure 6: Exam score distributions per epoch: Top:Score scatterplots: Singletons in green, twins in red.
y-axis = model score. Bottom: Histograms of scores: Singletons in green, twins in red. Class
separation continues to improve after epoch 22 (which has best validation loss), indicating that
the model is still usefully learning.



BEYOND VALIDATION LOSS

Epoch: 12 22 29 35 39
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Figure 7: Sensitivity (green) and specificity (red) vs threshold, per epoch. x-axis: threshold. y-axis: value
(of sens or spec) Shallower curves around the clinically-relevant operating point (> 90% specificity,

marked by short gray lines) indicate more stability.
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Figure 8: Exam scores vs GA, per epoch: x-axis = GA. y-axis = score. Red = Twin, green = singletons.
Low GA cases are always difficult. Later epochs (e.g. 35 vs. 22) “sacrifice” them to force singleton

scores closer to 0 and twin scores closer to 1, giving overall better separation.
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Appendix A. Scaling method to combine k-folds

A K-fold split setup yields K distinct models and associated scores on their respective validation sets. Each
sample has exactly one output score when treated as a validation sample, as calculated by one of the K
models. Performance of the K models on their validation sets offers valuable insight into model variability.
But these per-model results can be highly volatile for medical datasets that have small patient counts.

In such cases, it can be desirable to combine all the samples into one set, to give a larger validation set
on which to evaluate model performance. The catch is that the different models are calibrated differently,
i.e. they have different score ranges so that a given operating point will correspond to different thresholds in
each split, as seen in the left subplot of Figure 9. Therefore we offer here a technique to combine the model
scores on their validation sets into a single consistent set of scores for which a single threshold can be used.

We assume two classes, one of which is the “control” class. For example, blood samples that are unco-
agulated (the control) or coagulated, with class labels 0 and 1. Let samples be s; ¢, where ¢ € {0,1} is
the class, i is the sample index, and k is the split. The technique basically consists of mapping, for each
split, the distribution of its control sample validation scores to a common z-scale and common median. The
coagulated sample scores also get mapped according to this transform, i.e. they “go along for the ride”.

1. For each fold k, calculate the median and the two-sided standard deviations of the control samples,
my, = median(s;°) and similarly o, x, 0, . See code in Appendix B.

2. Choose a target median and right-hand standard deviation m; and o, ¢, e.g. m¢ = 0.3,0,+ = 0.2.

3. For each k, scale all the sample scores in the & validation set to a new normalized score n;:
n; = ort(sk:¢ —my)/or i (f sg; > my; similarly use oy if sg; < myg).

The {n;} are all directly comparable, in the following sense: if s; j, is  std devs above my, and s, is ©
std devs above my,, then n; = nj, so an x std dev threshold treats them both the same, whether it is in fold
k1, ke, or in the common scale. See Figure 9 for an example. Code is provided in Appendix B.

This method works best when scores are not already pushed to the rails (if scores are clustered at 0 and
1, the method has little impact vs. simply combining the various folds’ scores as-is).

10 10
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. . L g N
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L4 . 0" 4 . L
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¥ ..: el ", ot . . ;‘. 0" * &
. . . .
o . o|*® K a’, o, 2 . . &t
oy 40 B enle °r o 3 of® s .
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) . .
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fold fold

Figure 9: Effect of z-scale alignment. y-axis = scores. Green = controls, red = coagulated. Left: Raw
output scores per fold: Each fold’s model requires a different threshold for a given specificity.
Right: mapped scores per fold: One threshold gives the same specificity for all folds.
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Appendix B. Python function defs
B.1. 2-sided standard deviations

Asymmetrical distributions are imperfectly described by the standard deviation with gaussian assumption.
A quick way to more precision is to calculate two standard deviations, right- and lefthanded, using just the
points to the right (or left) of the median.

import numpy as

def calculateTwoSidedStdDev_fn(x, middleVal=None)
Calculate two standard deviations, one for the left and one for the right, by flipping samples across
the median (not across the mean, on the grounds that in asymmetrical distributions the median
is likely closer to the peak value).

Parameters

x : list-like or np.array vector
middleVal: float or int. If you don’'t want to use the median. Default = None, ie use median.

Returns

stdDevRight : scalar float
stdDevleft : scalar float

IRIRT)

if len(x) <= 1:
stdDevRight = -1
stdDevleft = -1
else:
if middleVal != None:
m = middleVal
else:
m = np.median(x)
X=X-m
xH = x[x >= 0] # top half, shifted to a nominal 0 center
xL = x[x <= 0] # bottom half

stdDevRight = np.std(np.concatenate((-xH, xH)))
stdDevLeft = np.std(np.concatenate((xL, -xL)))

return stdDevRight, stdDevLeft

# End of calculateTwoSidedStdDev_fn

B.2. z-scale alignment

The first def below extracts the parameters of the distributions in each split. The second def applies these
parameters to z-map the scores of each split.
import numpy as np
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def standardizeSvmScoresForKArrayGivenParams_fn(x, p):
Given an array of model output scores from k splits adjust them using parameters
pre-calculated by 'calculateStandardizationParamsForKFoldScores_fn' (above).
We apply vector operations to, for each split’s score,
1. Subtract that split's median to center the scores at (hypothetical) zeros
2. Scale each values by its split's stdDevs (RH and LH) to roughly match the canonical std dev
3. Shift all the values to the canonical median.
NOTE: Function exits if there is a zero in splitRhStdDevs or splitLhStdDevs. This should not occur,
because the training samples that generated the std devs would have to have identical scores.
Parameters

x : list of floats, len = number of splits, ie number of models

p : dict with keys 'canonicalMedian’, 'canonicalStdDev’, 'splitMedians’,
'splitRhStdDevs’, 'splitLhStdDevs’ All entries except 'canonicalMedian’ and
"canonicalStdDev’ will be vectors if we are adjusting all splits at once.

Returns

adjX : list of floats, same length as argin 'x’.

rhStd = np.array(p['splitRhStdDevs'])

IhStd = np.array(p|['splitLhStdDevs'])
canonStd = np.array(p['canonicalStdDev'])
canonMedian = np.array(p['canonicalMedian’'])
splitMedians = np.array(p|['splitMedians'])

if np.sum(rhStd == 0) > 0 or np.sum(IhStd == 0) > 0: # should not happen
print(’'splitRhStdDevs or splitLhStdDevs contains a 0 value. Returning input scores.’)
adjX = x
else:
t0 = x - splitMedians # subtract each split's median
# Apply column vector operations:
for k in range(len(splitMedians)): # Process each column in turn:
tk = t0[:, K]
if np.sum(tk > 0) > O:
tk[tk > 0] = tk[tk > 0] * canonStd / rhStd[k] # to right of median
if np.sum(tk < 0) > 0:
tk[tk < 0] = tk[tk < 0] * canonStd / IhStd[k] # to left of median
t0[:, k] = tk
adjX = t0 + canonMedian * np.ones(x.shape)

return adjX

# End of standardizeSvmScoresGivenParams_fn

#

def standardizeKFoldScoresForVectorGivenParams_fn(x, split, p):

nnn

Given a vector of scores from a model, along with a vector of their splits, standardize the

12
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scores of each fold using the dictionary of parameters.

The argins will likely be the scores on k test sets, concatenated into a vector, where the

scores came from k models built on a k-fold split.

Parameters

x : list-like of floats (scores)
split : list-like of ints (fold indices). same len as 'scores’
p : dict of params (see unpacking in first few lines)

Returns

adjScores : list-like of floats. same len as 'scores’

IRIRT)

foldVals = np.unique(split) # hopefully 0,1,2, etc. But does not need to be.
canonicalMedian = p['canonicalMedian’]

canonicalStdDev = p['canonicalStdDev’]

splitMedians = p['splitMedians’]

splitRhStdDevs = p['splitRhStdDevs']

splitLhStdDevs = p|['splitLhStdDevs']

adjX = x.copy()
for k in range(len(foldVals)):
# Adjust all scores in this fold:
inds = split == foldVals[K]
t = x[inds]
m = splitMedians[k]
r = splitRhStdDevs[k]
| = splitLhStdDevs[k]
t0=t-m
if r > 0: # in case r == 0, don't divide (a catch)
t0[t0 > 0] = tO[t0 >; 0] * p['canonicalStdDev'] / r # to the right of median
else:
pass
print('rh stdDev = 0 on " + str(np.sum(t0 > 0)) + ' cases ; median.")
if | > 0: # ditto
t0[t0 < 0] = tO[t0 < 0] * p['canonicalStdDev'] / | # to the left of median
else:
pass
print('lh stdDev = 0 on " + str(np.sum(t0 > 0)) + ' cases < median.")
adjX[inds] = t0 + p['canonicalMedian’]

# optional: could clip adjX at 0 and 1.
return adjX

# End of standardizeKFoldScoresForVectorGivenParams_fn
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e B.3. n% sliver AUC

64 import numpy as np

6s from sklearn.metrics import roc_curve

ess def calculateSliverAuc_fn(y, yHat, targetSpec):

687 e

688 Given scores, binary labels, and a minimum specificity: calculate the normalized AUC
689 within the leftmost sliver of an ROC curve.

690

691 Parameters

692
03y list-like of ints (Os and 1s)

ws  yHat : list-like of floats (scores). same len as 'y’
695 targetSpec : int (1 to 99)

696 Returns

697
698 sliverAuc : float

699 n

700

701 maxFprForAuclLoss = (100 - targetSpec) / 100

702 [fpr, tpr, op] = roc_curve(y, yHat, pos_label=1)

703 inds = np.where(fpr <= maxFprForAucLoss)[0]

704 f = list(fpr[inds]) 4+ [maxFprForAuclLoss] # postpend an endpoint fpr
st = list(tpr[inds]) + [tpr[inds[-1]]] # postpend the corresponding tpr value
706 sessionSliverAuc = 0

oz foriin range(len(f) - 1):

708 sliverAuc += (fli+1] - f[i]) * (0.5 * (t[i+1] + t[i])) # Trapezoid rule
700 sliverAuc = sliverAuc / maxFprForAuclLoss # normalize

710

m return sliverAuc

712

n3 # End of calculateSliverAuc_fn
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