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Introduction: Light microscopy remains a standard method for detection of

malaria parasites in clinical cases but training to expert level requires

considerable time. Moreover, excessive workflow causes fatigue and can

impact performance. An automated microscopy tool could aid in clinics with

limited access to highly skilled microscopists, where case numbers are excessive,

or in multi-site studies where consistency is essential. The EasyScan GO is an

automated scanning microscope combined with machine learning software

designed to detect malaria parasites in field-prepared Giemsa-stained blood

films. This study evaluates the ability of the EasyScan GO to detect, quantify and

identify the species of parasite present in blood films compared with expert light

microscopy.

Methods: Travelers returning to the UK and testing positive for malaria were

screened for eligibility and enrolled. Blood samples from enrolled participants

were used to make Giemsa-stained smears assessed by expert light microscopy

and the EasyScan GO to determine parasite density and species. Blood samples

were also assessed by PCR to confirm parasite density and species present and

resolve discrepancy between manual microscopy and the EasyScan GO.

Results: When compared to light microscopy, the EasyScan GO exhibited a

sensitivity of 88% (95% CI: 80-93%) and a specificity of 89% (95% CI: 87-91%). Of

the 99 samples labelled positive by both, manual microscopy identified 87 as

Plasmodium falciparum (Pf) and 12 as non-Pf. The EasyScan GO correctly

reported Pf for 86 of the 87 Pf samples and non-Pf for 11 of 12 non-Pf

samples. However, it failed to distinguish between non-Pf species, reporting all

as P. vivax. The EasyScan GO calculated parasite densities were within +/-25% of

light microscopy densities for 33% of samples between 200 and 2000 p/µL,
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falling short of WHO level 1 (expert) manual microscopy competency (50% of

samples should be within +/-25% of the true parasitemia).

Discussion: This study shows that the EasyScan GO can be proficient in

detecting malaria parasites in Giemsa-stained blood films relative to expert

light microscopy and accurately distinguish between Pf and non-Pf species.

Performance at low parasite densities, distinguishing between non-Pf species

and accurate quantitation of parasitemia require further development and

evaluation.
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1 Introduction

Current WHO estimations suggest that malaria is responsible

for over 200 million infections annually, of which approximately

half a million cases lead to death (WHO, 2018a). The disease is a

significant global burden, particularly in regions of sub-Saharan

Africa. While there has more recently been an increase in

implementation of alternative diagnostic methods for detection of

malaria, including rapid diagnostic kits (RDTs) (Jimenez et al.,

2017; Cunningham et al., 2019) and polymerase chain reaction

(PCR) (Padley et al., 2003; Roth et al., 2016), manual light

microscopy, where available, remains the standard of care in a

clinical laboratory, backed up by RDTs and/or PCR if required,

since light microscopy is able to detect, quantify and identify all

species of malaria parasites (Plasmodium spp.) infecting humans

(Rogers et al., 2022). The method involves a reader examining

multiple fields of view (FOV) in both thick and thin Giemsa-stained

blood films (Makhija et al., 2015; WHO, 2016). Accuracy of manual

microscopy is critically dependent on the skill of the microscopist

and is difficult to standardize, since performance can be hampered

by excessive workload requiring high levels of concentration over

many hours (Wongsrichanalai et al., 2007; Bowers et al., 2009). In

these circumstances, diagnostic quality can be compromised,

leading to incorrect clinical management of cases. An increase in

false positive results means patients are being given unnecessary

treatment with anti-malarial drugs, whereas false negatives can lead

to an increase in the provision of unnecessary anti-infective agents,

ongoing clinical symptoms, increased morbidity and possible death

(GMP, 2009).

Automated malaria diagnosis systems have several potential

benefits: they do not fatigue; they give reproducible results; they can

examine greater quantities of blood to give more stable results; they

can increase the productivity of overworked technicians and

pathologists; and they can be widely deployed, addressing the

expert-training bottleneck. For example, automated systems (if

sufficiently accurate) would be well-suited to drug resistance

monitoring (Tilley et al., 2016; Balikagala et al., 2021), which

requires extensive parasite quantitation to derive clearance curves
02
(White, 2011). Because of widespread infrastructure centered on

Giemsa-stained blood films for manual microscopy, automated

methods that use Giemsa-stained films are best positioned for

rapid, practical deployment. Most work on software for

automated analysis of digital images has (at least) two key

problems: Firstly, it is focused on thin blood films (Das et al.,

2015; Rosado et al., 2016; Pattanaik and Swarnkar, 2018; Poostchi

et al., 2018), despite thin films being poorly suited to malaria use-

cases such as detection of low parasitemias and end-point

assessment in drug efficacy studies. Thick films are preferable in

such situations (WHO, 2016; Mehanian et al., 2017; Delahunt et al.,

2019). Secondly, most machine learning studies report performance

metrics inappropriate for clinical malaria case scenarios (Poostchi

et al., 2018; Delahunt et al., 2019). Nevertheless, substantial progress

has been made in automated systems targeting thick blood films

(Mehanian et al., 2017; Torres et al., 2018; Manescu et al., 2019;

Vongpromek et al., 2019; Yang et al., 2020; Horning et al., 2021),

including the use of clinically relevant performance metrics. This

work has leveraged revolutionary advances in machine learning

(ML) based on convolutional neural networks (CNNs), in which

algorithms automatically extract useful visual features to analyze

digital images (LeCun et al., 2015; Goodfellow et al., 2016).

These benefits of automated systems are offset by drawbacks

(Torres et al., 2018), including: high training data demands of CNNs;

difficulty handling the wide variation in field-prepared blood films; ML

algorithms’ notorious brittleness in the face of novel presentations (e.g.

data from new field sites); dependence on complex hardware deployed

in potentially challenging environments; and ML algorithms’ current

inability to match the adaptability of skilled human technicians.

In addition to software algorithms, an automated system

requires reliable hardware to scan blood slides and capture

images for analysis. Because of the blood volume required (e.g. to

contain 500 white blood cells at a minimum (WHO, 2016)), the

hardware must be high-throughput, and to process thick films it

must capture stacks of images at multiple depths (Mehanian et al.,

2017; Manescu et al., 2019). To meet malaria use case scenarios,

hardware must be robust and low-cost. Thus, the hardware

component of an automated system also represents a significant
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challenge. Given the known risks (from both software and

hardware) of automated systems, field studies involving realistic

clinical tasks are essential to assessing their readiness for

deployment for individual malaria diagnosis.

In this study, we tested a fully automated malaria diagnosis

system that combines ML software developed by Global Health

Laboratories (GHL) with the EasyScan GO, an automated scanning

microscope developed by Motic (2021). We present a diagnostic

performance evaluation of the EasyScan GO by direct comparison

with expert manual microscopy, using PCR as a reference.

Specifically, we assess the accuracy of the device in the detection,

quantitation and species identification of malaria parasites in

Giemsa-stained thick and thin blood films. This study is the fifth

in a series of field trials of this family of software and hardware;

others were in Peru (Torres et al., 2018), Thailand/Indonesia

(Vongpromek et al., 2019), on a WHO evaluation slide set

(Horning et al., 2021) and very recently in an 11-site, 11-country

study (Das et al., 2022). The system has also had two internal

assessments (Mehanian et al., 2017; Delahunt et al., 2019).

Together, these studies offer a uniquely broad evaluation of

performance, in realistic settings, of an automated system for

malaria diagnosis.
2 Materials and methods

2.1 Sample collection

Returned travelers who have recently visited malaria-endemic

countries and are unwell are routinely assessed for possible malaria

infection in clinics at The Hospital for Tropical Diseases and

Homerton University Hospital, London, UK. Diagnostic evaluation

primarily involves examination of patient blood samples by manual

light microscopy (using stained peripheral blood smears) to confirm

the presence of malaria parasites, determine the species and provide

an estimation of parasitemia where P. falciparum or P. knowlesi are

present. Supplementary testing using Rapid Diagnostic Tests (RDTs)

and PCR may also take place (Tangpukdee et al., 2009; Bailey et al.,

2013). Patients who are confirmed positive for malaria are given

appropriate antimalarial medication and supportive care. For this

study, residual patient blood samples were obtained subsequent to

routine laboratory testing from a total of 1202 returned travelers over

the age of 18 years. These samples were anonymized and used to

prepare study-specific Giemsa-stained thick and thin blood films to

facilitate a direct comparison between manual light microscopy and

the EasyScan GO and for PCR assessment at The London School of

Hygiene and Tropical Medicine, London, UK.
2.2 Light microscopy: Blood
film preparation, staining and
parasite-detection

Thick and thin smears were prepared on clean glass slides using

surplus patient EDTA blood samples which had been obtained by

venepuncture (Warhurst and Williams, 1996; WHO, 2016). Thin
Frontiers in Malaria 03
smears were fixed in methanol for 1 minute prior to staining. Fully

air-dried smears were immersed for 30 minutes in 3% (v/v) Giemsa

staining solution diluted in Phosphate-buffered water (pH 7.2),

rinsed in tap water to remove stain deposit and allowed to air-dry

vertically. Blood films were viewed using a x100 oil-immersion

objective and a minimum of 200 and 50 fields of view (FOV) were

assessed for thick and thin films respectively. Thick films were

initially used for positive confirmation of malaria parasites being

present within a blood sample whereas thin films were used for

Plasmodium species determination. For subsequent quantitation of

parasites, thick films were further examined and parasites counted

until a total of 500 white blood cells (WBCs) had been seen and an

accurate parasite density (parasites/µL of blood) determined using

patient WBC counts obtained from laboratory records.

For each blood sample, there were two independent reads

performed. The first result was obtained from the routine

diagnostic laboratory after examination by two microscopists

within that laboratory and was used to determine if samples were

malaria parasite positive or negative for recruitment purposes. The

second reading was study-specific, also provided by an expert

microscopist, who examined slides produced from the same blood

samples after they had been anonymized to confirm positivity and

perform accurate quantitation. If there was a discrepancy between

the results provided by the study microscopist and the initial

diagnostic laboratory microscopy result, a second expert study

microscopist was then engaged to perform a third read.
2.3 EasyScan GO: algorithm training, image
acquisition and analysis

The EasyScan GO is a fully automated end-to-end malaria

diagnostic system which includes both hardware and software. An

automated bright-field microscopy platform scans Giemsa-stained

thick and thin blood films, and malaria detection algorithms

process the image sets to give parasite detection, species ID, and

parasite quantitation for the patient. Given a blood film, the device

automatically scans and processes the slide, and outputs a report

that includes estimated diagnosis, species ID, quantitation, WBC

count, and a mosaic of thumbnail images of top suspected malaria

parasites (Figure 1). The images allow a technician or pathologist to

quickly check the device’s findings. Using the current software and

for the purposes of this study, a complete slide evaluation including

an output report with image thumbnails took ~10 minutes

(Horning et al., 2021). Thin films generally took longer at ~18

minutes per slide, as more FOV needed to be scanned.

Thick films are used to (i) confirm whether malaria parasites are

present, (ii) obtain an accurate parasite count, and (iii) obtain a

species identification of P. falciparum vs non-P. falciparum (with

the default for non-P. falciparum cases being P. vivax). Thin films

are used for refined Plasmodium species determination (e.g.

between non-P. falciparum species). The overall algorithm

architecture, as well as the EasyScan GO device, are described in

(Horning et al., 2021). Thick film algorithms are fully detailed in

(Mehanian et al., 2017) and thin film algorithms, in (Delahunt

et al., 2019).
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Briefly, a new sample is assessed as follows: In a thick film the

algorithm analyses 100 image stacks (each 113 µm x 85 µm x 5

depths), containing an average of 1527 WBCs (std dev 862; 90% of

samples have over 720 WBCs). Candidate parasite objects are

detected, then culled, by rapid morphological methods, which are

tuned for high sensitivity yet still eliminate most of the easier

distractor objects. The remaining candidate objects pass through

two convolutional neural net (CNN) classifiers to receive labels as
Frontiers in Malaria 04
ring, late-stage, or distractor. WBCs are detected and counted by a

separate module. Diagnosis is based on whether the suspected

parasite count per WBC exceeds a noise threshold that has been

pre-tuned to aim for 90% patient specificity. While the high blood

volume examined theoretically allows for a lower limit of detection,

in practice the object false positive rate is a limiting factor (Delahunt

et al., 2022). Quantitation is reported based on thick films only,

leveraging the large blood volume examined to reduce Poisson
FIGURE 1

A typical patient thick film report for a P. falciparum sample, as outputted by the EasyScan GO. The report includes statistics, predicted diagnosis,
and mosaics of thumbnails of the highest scoring detected objects. The mosaics allow an expert microscopist to quickly double-check whether the
detected objects justifying the EasyScan GO diagnosis are truly parasites. Thick and thin film reports from a non-P. falciparum sample are shown in
Supplementary Figures 1 and 2.
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variability (Delahunt et al., 2019). Species ID is binary, P.

falciparum vs non-P. falciparum, based on comparing ring and

late-stage counts and leveraging two facts: sequestration in P.

falciparum and relatively low parasitemias in non-P. falciparum

infections. For those samples labeled non-P. falciparum, the thin

film is processed in a similar fashion to the thick film, but with a

single CNN assigning a species (or distractor) label to each object.

Final species ID from thin film is determined by weighted

majority vote.

Training slides included over 500 imaged blood slides from 12

countries, encompassing a wide range of different staining

presentations and containing a variety of artefacts. The collection

included large numbers of P. falciparum-positive, P. vivax-positive,

and Plasmodium spp.-negative slides, and much smaller numbers of

P. ovale and P. malariae-positive slides, as these species are much

less commonly encountered. Slides used for training were annotated

by expert microscopists specializing in the diagnosis of malaria.

Details about slide collections are found in (Mehanian et al., 2017;

Delahunt et al., 2019; Horning et al., 2021). Annotation methods are

fully described in (Mehanian et al., 2017).
2.4 Real-time and nested PCR

The WHO international standard for P. falciparum DNA for

nucleic acid amplification techniques (Padley et al., 2008) was used

as a positive control for P. falciparum. Lyophilized blood samples

derived from patients infected with P. vivax, P. ovale and P.

malariae, used as part of the WHO external quality assessment

scheme for malaria nucleic acid amplification testing (WHO,

2018b) were used as non-P. falciparum positive controls. Negative

controls consisted of negative extraction controls (whole uninfected

blood) and negative assay controls (nuclease-free water). Parasite

DNA was extracted from samples using the PureLink™ Pro 96

Genomic DNA Purification Kit (Invitrogen, US).

For real-time PCR, in the first instance, each sample was

amplified in a multiplex reaction targeting the conserved region

of the Plasmodium 18S rRNA gene and the human beta-2

microglobulin (b2 M) gene (a DNA extraction control). After

genus-specific amplification, positive samples were subsequently

tested for P. falciparum, P. vivax, P. ovale and P. malariae in a

multiplex real-time PCR reaction. Primers used for these

amplifications are shown in supplemental table 1 and are

modified slightly from those described previously (Shokoples

et al., 2009). The ABI 7500 FAST System (Applied Biosystems,

US) was used for all amplification reactions. The conditions

consisted of an initial activation of DNA Polymerase at 95°C for

30 secs followed by 40 cycles of amplification comprising

denaturation at 95°C for 3 secs, annealing and extension at 60°C

for 30 secs.

Nested PCR (nPCR) is widely regarded as the gold standard

nucleic acid amplification (NAA) method for detection of malaria

parasites in very low density samples (Cordray and Richards-

Kortum, 2012; Vasoo and Pritt, 2013) and was performed as a

confirmatory test where there was discordance between results
Frontiers in Malaria 05
reported for manual light microscopy, EasyScan GO and real-

time PCR. The species-specific nucleotide sequences of the 18S

rRNA gene of P. falciparum, P. vivax, P. malariae and P. ovale were

amplified as described previously (Snounou et al., 1993; Snounou

and Singh, 2002; Padley et al., 2003; Singh et al., 2004; Calderaro

et al., 2007) with slight modifications, and primers used are shown

in supplemental table 1. Assays were performed using a PxE

thermal cycler (ThermoFisher Scientific, US) and a DNA Engine

Tetrad® 2 cycler (Bio-Rad, US). Thermal cycling parameters used

are described previously (Snounou and Singh, 2002) with the only

adaptation being that Nest 1 and Nest 2 reactions were given 30 and

25 cycles of annealing, extension and denaturation respectively.
2.5 Sample size and statistical analysis

The required sample size of 104 malaria positive slides and 1125

malaria negative slides was calculated as a non-inferiority study to

be able to jointly test that the sensitivity of EasyScan GO was not

decreased by more than 80% compared to expert microscopy, and

that the false positive fraction (1-specificity) was not increased by

more than 50% compared to expert microscopy, with 5%

significance and 80% power. The malaria positive slides were

expected to be derived from symptomatic clinical cases, plus

follow-up slides from these same patients following treatment (i.e.

with lower parasitemia). The sensitivity and specificity for expert

microscopy with this slide composition was assumed to be 80% and

90%, respectively.
3 Results

3.1 Diagnostic accuracy of
the EasyScan GO compared
with manual light microscopy

A total of 1202 patient samples were collected and the same sets

of Giemsa-stained thick and thin slides evaluated concurrently by

manual light microscopy and the EasyScan GO. By light

microscopy, 113 of the samples were confirmed as malaria

parasite positive and 1089 were negative. When compared to light

microscopy, the EasyScan GO exhibited a sensitivity of 88% (95%

CI: 80-93%) and a specificity of 89% (95% CI: 87-91%). The

EasyScan GO correctly identified 99 of the 113 light microscopy

positives but also incorrectly reported a positive result for 122

samples that were identified as parasite negative (1089) by light

microscopy (Table 1).

Of the 99 samples labelled positive by both light microscopy and

the EasyScan GO, manual microscopy identified 87 as P. falciparum

and 12 as non-P. falciparum comprising 6 P. vivax, 5 P. ovale and 1 P.

malariae. The EasyScan GO correctly reported P. falciparum for 86 of

the 87 P. falciparum samples and reported non- P. falciparum for 11

out of 12 non-P. falciparum samples (Kappa = 0.905). However, it

failed to distinguish between the non-falciparum species, reporting all

non-P. falciparum samples as P. vivax.
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3.2 Comparative malaria
parasite quantitation

To achieve level 1 (expert) competency in malaria microscopy,

the WHO requires that 50% of samples containing malaria parasites

with densities between 200 and 2000 p/uL be quantified within

+/-25% of the “true count” (WHO, 2016). Quantitation of low

parasitemia (e.g. under 200 p/µL) samples is intrinsically noisy due

to Poisson variability in the number of parasites present in the

examined blood (Delahunt et al., 2019). In this study, EasyScan GO

quantitation was within +/-25% of true count for 33% (6/18) of

samples with parasitemias between 200 and 2000 p/µL; and within

+/-25% of true count for 30% (24/79) of samples with parasitemias

above 200 p/µL (Figure 2). It should be noted that the WHO

standard assumes that the ground-truth quantitation is an average

of several counts provided by multiple expert-level microscopists,

while here we compare to a ground-truth given by a single expert-

level microscopist.
4 Discussion

Blood film examination for malaria parasites is far from extinct,

despite the wide uptake of malaria rapid diagnostic tests (RDTs).
Frontiers in Malaria 06
Indeed, the 2022 edition of the British Society for Haematology

guidelines for the laboratory diagnosis of malaria states “Rapid

diagnostic tests (RDTs) for malarial antigen cannot replace

microscopy but can be useful as a supplementary test when

malaria diagnosis is performed by relatively inexperienced staff.

They should not be used instead of a film at any time including out

of hours” (Rogers et al., 2022). Furthermore, HRP-2 and HRP-3

deletions represent a threat to the utility of HRP2-based RDTs in

some geographic areas (Feleke et al., 2021) so it is imperative to

retain blood film microscopy for the diagnosis of malaria both in

malaria-endemic areas and in travelers returning from those areas

presenting for diagnosis of a febrile illness. Nonetheless, quality

assured malaria microscopy requires significant expertise,

reinforcement by regular exposure to positive samples and regular

external quality assessment. Therefore, an automated process for

malaria microscopy which compares favorably with expert manual

microscopy would be a valuable addition to a laboratory’s

diagnostic repertoire. There are both advantages and drawbacks

to automated malaria diagnosis as outlined in the introduction of

this paper. Possible scenarios for use of an automated device like the

EasyScan GO include hospital clinics in malaria-endemic countries,

to support laboratory staff and thus allow them to increase patient

throughput; settings in non-malaria-endemic countries (like the

United Kingdom), where many biomedical scientists in general
FIGURE 2

Comparison of parasite densities estimated by EasyScan GO vs manual light microscopy. Dotted green lines correspond to +/- 25% error. PCR-
positive samples are black circles (Pf) or blue triangles (non-Pf). PCR-negative samples are red circles.
TABLE 1 Diagnostic accuracies of (A) light microscopy (LM) vs real-time PCR (as reference); (B) EasyScan GO vs real-time PCR (as reference); and (C)
EasyScan GO vs light microscopy (as reference).

(A) LM vs PCR (B) EasyScan GO vs PCR (C) EasyScan GO vs LM

Sensitivity, % (95% CI), N/Ntot 72% (64-79), 111/154 69% (61-76), 106/154 88% (80-93), 99/113

Specificity, % (95% CI), N/Ntot 100% (99-100), 1046/1048 89% (87-91), 933/1048 89% (87-91), 967/1089

Likelihood ratio (+), N (95% CI) 377.69 (94-1513) 6.27 (5.12-7.68) 7.82 (6.53-9.37)

Likelihood ratio (-), N (95% CI) 0.28 (0.22-0.36) 0.35 (0.28-0.44) 0.14 (0.09-0.23)
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hospitals outside the National Centres for Tropical Diseases do not

routinely see malaria cases and may therefore lack both experience

and high-level expertise; and in sentinel sites monitoring drug

resistance, to aid in the highly labor-intensive quantitation work

required. Suitability for these scenarios depends, in various ways, on

parasite detection, species identification, and quantitation, as

detailed below.
4.1 Diagnosis

In this study, diagnostic accuracy of the EasyScan GO was

similar to that of expert Light Microscopy. The principal difference

was the EasyScan GO’s lower specificity (89% vs 100%, PCR as

reference). From a clinical perspective, false positives could mean

patients receiving drug treatment that is not required, therefore the

device would not be used as a standalone diagnostic tool without

additional input from other laboratory staff needing to screen

further for potential false positives. However, the mosaic of

thumbnails of suspected parasites (e.g. as shown in Figure 1 and

supplementary figures 1 and 2), included in every report outputted

by the device, makes this check relatively easy and screening could

be done remotely if so required. Sensitivity of the EasyScan GO was

very similar to light microscopy, meaning both techniques are able

to positively identify parasites at comparable densities and become

limited below similar parasite densities. In terms of clinical care, this

is reassuring since similar numbers of positive malaria infections

could be identified and subsequently treated. The low sensitivity of

light microscopy vs PCR was likely due to the inclusion of a number

of low-parasitemia samples (under 50 parasites/µL), which would

often be undetected by most non-reference microscopists and could

therefore be missed in a routine laboratory. In addition, some of the

patients sampled may in fact be 1-2 weeks post treatment for

malaria and the positive PCR is residual circulating Plasmodial

DNA, rather than an active infection with live parasites. The low

sensitivity of the EasyScan GO vs PCR was mostly observed in the

same low-parasitemia samples, but the device did appear to miss

two samples with higher parasitemia (see Figure 2). The sample

with a very high parasitemia (~35,000 p/µL) was possibly post-

treatment, since the parasites appeared to contain no cytoplasm,

which could potentially lead to the software algorithm having much

more difficulty identifying them as true parasites. The EasyScan GO

did detect a few low-parasitemia samples that were missed by light

microscopy but picked up by PCR. However, given the high

estimated parasitemia of these samples compared with the PCR

result, it suggests they may have been “right for the wrong reason”,

with the positive diagnoses triggered by incorrectly classified

artefacts rather than correctly classified parasites. If so, they are

perhaps most similar to false positive negative samples. One of the

most common limitations with light microscopy that will also

impact any digital imaging device such as the EasyScan GO is

variation in quality of blood films (Das et al., 2022). The software

was trained with a large number of training slides encompassing a

wide range of slide backgrounds containing a variety of different

artefacts, but undoubtedly the device will improve further as it

learns from a larger range of sample sets in future.
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4.2 Species identification

The Easy Scan GO accurately distinguished P. falciparum from

non-P. falciparum, using the thick film. However, it failed to

distinguish between the various non-P. falciparum species,

defaulting to P. vivax. This was likely a reflection of insufficient P.

ovale and P. malariae training samples: CNNs require vast amounts

of training data, and due to natural distributions of the malaria

species the algorithms’ training sets were highly imbalanced,

containing ample P. vivax (and P. falciparum) but very few P.

ovale and P. malariae blood films. In addition, to determine species,

the algorithm applies a logical decision tree to findings from thick

and thin films, where thick film decides between P. falciparum and

non-P. falciparum, and thin film can modify a non-falciparum

finding. Due to prevalence rates and training data imbalances, this

logical tree favors P. vivax over P. ovale and P, malariae. That is, P.

vivax is the default non-P. falciparum choice. This weakness might

be mitigated in two ways: By substantially increasing the number of

P. ovale and P. malariae samples in the training set (in practice, a

difficult task); or by applying local geographical priors, e.g. the

rareness of P. vivax relative to P. ovale in West Africa (Howes et al.,

2011) (as in (WHO, 2000; Bailey et al., 2013; WHO, 2016)). Since

the EasyScan GO has an implicit bias towards P. vivax (vs. ovale,

malariae, and knowlesi), it is more suitable for geographic regions

with this same predominance, for example India or Peru. This

concern does not apply to diagnosis of P. falciparum.
4.3 Quantitation

Evolving drug resistance (Tilley et al., 2016; Balikagala et al.,

2021) makes drug efficacy trials and drug resistance sentinel sites a

potential use-scenario for automated microscopy, because of the

need for high-throughput parasite quantitation in laboratory

settings: The labor-intensive process requires quantitating blood

films drawn every few hours from treated patients, in order to plot

parasite clearance curves (White, 2011). Since several film

quantitations are combined to calculate a clearance curve, the

exact performance specification for individual blood film

quantitations is not well defined and partly depends on the

calculation method. An informal guideline recommends that

most quantitations be accurate to within +/- 25% (excepting very

low parasitemia samples) (Dhorda M, WWARN. Personal

communication). WHO’s microscopist evaluation protocol looks

at whether P. falciparum samples with parasitemia between 200 and

2000 p/µL have a quantitation error within 25% (WHO, 2016). In

this study, EasyScan GO’s accuracy was within this margin for 33%

of such samples. This may be too low to usefully calculate accurate

clearance curves, though it might be close to sufficient. An

experiment on a set of time-series blood films as used in

clearance studies, comparing clearance curve log slopes as

calculated from quantitations done by light microscopy and by

the EasyScan GO, would help clarify this point.

An important detail to note is that light microscopy parasite

quantitations in this study were based on accurate total WBC

counts which varied widely by individual (mean 5430, std dev
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2070), while EasyScan GO assumed a fixed value of 8000 WBCs/µL.

When correcting parasitemia estimates provided by EasyScan GO

using accurate individual WBC counts, the percentage of samples

having quantitation error within the 25% margin increases to 50%.

This indicates that quantitation error was affected by how WBC

counts per µL were defined for the samples examined.
4.4 Comparison to performance by the
same system in other field trials

The EasyScan GO system, and very similar algorithms deployed

on different hardware, have been evaluated in four other field trials

(Torres et al., 2018; Vongpromek et al., 2019; Horning et al., 2021;

Das et al., 2022) and two internal tests (Mehanian et al., 2017;

Delahunt et al., 2019) allowing a broad perspective on system

reliability in the face of diverse slide presentations.
Fron
1. The same EasyScan GO system was applied to a WHO 55

reference set and had somewhat stronger performance vs

PCR (87% sensitivity, 100% specificity) (Horning et al.,

2021). The higher sensitivity was likely because the WHO

set had only parasitemias above 80 p/uL, i.e. it lacked the

low parasitemias typically challenging for microscopists.

The difference in specificities was perhaps due to differences

in slide preparation and distractor types in the two sets of

slides.

2. The same EasyScan GO system, minus the thin film

algorithm and applied to thick films only, was also

applied to field slides (170 Light Microscopy (LM)-

positive, 623 LM-negative) from a variety of sites in

Thailand and Indonesia (Vongpromek et al., 2019). In

this setting, diagnostic accuracy was somewhat higher

(89% sensitivity, 97% specificity), whilst samples whose

parasi temia was under 50 p/µL, were missed.

Quantitation accuracy was very similar to that of the

current study: 30% of quantitations had error under 25%

relative to LM reference.

3. A system with a very similar thick film algorithm (no thin

film algorithm) and a different scanning microscope (the

Autoscope, not the EasyScan GO) was tested on field

samples (thick films only) in Peru (Torres et al., 2018).

Performance in Peru was very similar to that reported here.

In particular, sensitivities compared with PCR were nearly

identical (LM: 68%, Autoscope: 72%), and specificities were

very similar (LM: 98%, Autoscope 85%). The Peru study

presented only P. falciparum and P. vivax and algorithm

species identification accuracy was 90%.

4. The same system as used in the present study, minus the thin

film module and applied to thick films only, was tested on

field samples at 11 sites in 11 countries (Das et al., 2022).

Sensitivity and specificity were similar (91% and 85%).

Species identification accuracy (P. falciparum vs P. vivax

only, no P. ovale or P. malariae present) was 92%.
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Quantitation accuracy was worse (23% of quantitations

had error under 25% relative to LM reference).

5. Two internal algorithm assessments reported similar though

somewhat more optimistic results (Mehanian et al., 2017;

Delahunt et al., 2019).
The perspective afforded by five separate field trials is, to our

knowledge, unique for an automated malaria diagnosis system.

This perspective is highly valuable because a system’s performance

can vary in different settings. Since machine learning-based

systems can be brittle in the face of new data sources, the high

variability of slide preparation at different clinics is a serious

challenge for automated malaria diagnosis systems. In this

context, therefore, multiple data points on system performance

are especially important to understanding a system’s suitability for

deployment. Collectively, these trials demonstrate strong

performance of a fully automated system for assessing a

diversity of Giemsa-stained blood films.
5 Conclusions

Manual malaria microscopy requires significant expertise and

even expert microscopists become fatigued in the face of a heavy

workload, with the potential for error. An automated system such as

the EasyScan GO would have the capacity to reduce workload for

individual microscopists whilst retaining the option for a technician

or pathologist to quickly check the device’s findings using the

mosaic of thumbnails of suspected parasites it produces. This

reflects the general fact that, currently, automated Machine

Learning systems do not match the capabilities of expert

microscopists at malaria diagnosis.

In this study, the EasyScan GO fell short in performance compared

to that of expert manual light microscopy in terms of sensitivity and

specificity (88% and 89% respectively). The EasyScan GO wrongly

identified 122 samples as positive that were read as parasite negative by

light microscopy. However, as mentioned above, this limitation could

be partially mitigated by the output of thumbnail images of these

wrongly identified parasites that can be rechecked by a microscopist on

site or from a remote location. From all malaria positives identified by

both light microscopy and the EasyScan GO, the latter accurately

identified all but one P. falciparum sample. From a clinical perspective,

this is an important variable since the device can detect almost as many

cases caused by this potentially deadly species as an expert microscopist

and a comparable number of patients would therefore be correctly

treated. However, by contrast, it failed to distinguish between non-P.

falciparum species, reporting all non-P. falciparum samples as P. vivax.

The EasyScan GO also fell short in its accuracy of parasite density

determination, only being able to quantify within +/-25% of the “true

count” in 33% of samples with densities between 200 and 2000 p/µL.

The dependence of quantitation accuracy on the ground truth

method for counting WBCs/µL suggests possible future paths for

automated microscopy: for example, scanning a known volume of

blood might improve quantitation accuracy e.g. the Earle and Perez

method, that does not require a microscopist to manually count
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WBCs in order to estimate parasitemia accurately (Bowers

et al., 2009).

As machine learning advances further and has the opportunity to

learn from exposure to more positive malaria sample images as well

as a wide range of background and staining artefacts, fully automated

systems such as EasyScan GO will have a future in malaria diagnosis

in a variety of settings in both endemic and non-endemic areas.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Ethics statement

The studies involving human participants were reviewed and

approved by London-Central Research Ethics Committee. Written

informed consent for participation was not required for this study

in accordance with the national legislation and the institutional

requirements.
Author contributions

CB and PC assisted with study design. KW and PC were

responsible for identifying and recruiting study participants. RR-C,

LG, PL, KB and SS were responsible for SP development and laboratory

work. MH, CD, LH, CM, and CT developed the software algorithm.

Study data was analysed by MG, MH, SB, CD and RR-C. CB, CD, RR-

C and PC were responsible for drafting the manuscript. All authors

contributed to the manuscript and approved the final version.
Funding

All funding for the study was provided by The Global Good

Fund I, LLC.
Frontiers in Malaria 09
Acknowledgments

The authors would like to thank all collaborating staff within

Research Offices at the London School of Hygiene and Tropical

Medicine, Homerton University Hospital NHS Foundation Trust,

and University College London/University College London

Hospitals NHS Foundation Trust (the Joint Research Office).

Specifically, we acknowledge the invaluable assistance provided by

senior research nurses Monica James (Homerton) and Michelle

Berkeley (UCL/UCLH). In addition, we would like to thank

laboratory staff within the department of Haematology at

Homerton University Hospital NHS Foundation Trust for the

preparation and provision of blood smears for their patients

enrolled in the study.
Conflict of interest

Author CT was employed by the company Creative Creek, LLC.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fmala.2023.

1148115/full#supplementary-material
References
Bailey, J. W., Williams, J., Bain, B. J., Parker-Williams, J., and Chiodini, P. L. (2013).
Guideline: the laboratory diagnosis of malaria. general haematology task force of the
British committee for standards in haematology. Br. J. Haematol. 163 (5), 573–580.
doi: 10.1111/bjh.12572

Balikagala, B., Fukuda, N., Ikeda, M., Katuro, O. T., Tachibana, S. I., Yamauchi, M.,
et al. (2021). Evidence of artemisinin-resistant malaria in Africa. Med N Engl. J. 385
(13), 1163–1171. doi: 10.1056/NEJMoa2101746

Bowers, K. M., Bell, D., Chiodini, P. L., Barnwell, J., Incardona, S., Yen, S., et al.
(2009). Inter-rater reliability of malaria parasite counts and comparison of methods.
Malar J. 8, 267. doi: 10.1186/1475-2875-8-267

Calderaro, A., Piccolo, G., Perandin, F., Gorrini, C., Peruzzi, S., Zuelli, C., et al.
(2007). Genetic polymorphisms influence plasmodium ovale PCR detection accuracy.
J. Clin. Microbiol. 45 (5), 1624–1627. doi: 10.1128/JCM.02316-06

Cordray, M. S., and Richards-Kortum, R. R. (2012). Emerging nucleic acid-based
tests for point-of-care detection of malaria. Am. J. Trop. Med. Hyg. 87 (2), 223–230.
doi: 10.4269/ajtmh.2012.11-0685
Cunningham, J., Jones, S., Gatton, M. L., Barnwell, J. W., Cheng, Q., Chiodini, P. L.,
et al. (2019). A review of the WHO malaria rapid diagnostic test product testing
programme (2008–2018): performance, procurement and policy. Malar J. 18, 387. doi:
10.1186/s12936-019-3028-z

Das,D.K.,Mukherjee,R.,andChakraborty,C.(2015).Computationalmicroscopicimagingfor
malariaparasitedetection:asystematicreview.J.Microsc260(1),1–19.doi:10.1111/jmi.12270

Das, D., Vongpromek, R., Assawariyathipat, T., Srinamon, K., Kennon, K.,
Stepniewska, K., et al. (2022). Field evaluation of the diagnostic performance of
EasyScan GO. a digital malaria microscopy device based on machine-learning.
Malaria J. 21, 122. doi: 10.1186/s12936-022-04146-1

Delahunt, C. B., Gachuhi, N., and Horning, M. P. (2022) Use case-focused metrics to
evaluate machine learning for diseases involving parasite loads. Available at: https://
arxiv.org/abs/2209.06947.

Delahunt, C. B., Jaiswal, M. S., Horning, M. P., Janko, S., Thompson, C. M., Kulhare,
S., et al. (2019). “Fully-automated patient-level malaria assessment on field-prepared
thin blood film microscopy images,” in 2019 IEEE Global Humanitarian Technology
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fmala.2023.1148115/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmala.2023.1148115/full#supplementary-material
https://doi.org/10.1111/bjh.12572
https://doi.org/10.1056/NEJMoa2101746
https://doi.org/10.1186/1475-2875-8-267
https://doi.org/10.1128/JCM.02316-06
https://doi.org/10.4269/ajtmh.2012.11-0685
https://doi.org/10.1186/s12936-019-3028-z
https://doi.org/10.1111/jmi.12270
https://doi.org/10.1186/s12936-022-04146-1
https://arxiv.org/abs/2209.06947
https://arxiv.org/abs/2209.06947
https://doi.org/10.3389/fmala.2023.1148115
https://www.frontiersin.org/journals/malaria
https://www.frontiersin.org


Rees-Channer et al. 10.3389/fmala.2023.1148115
Conference (GHTC), (Seattle, WA, United States: IEEE). 1–8. doi: 10.1109/
GHTC46095.2019.9033083

Feleke, S. M., Reichert, E. N., Mohammed, H., Brhane, B. G., Mekete, K., Mamo, H.,
et al. (2021). Plasmodium falciparum is evolving to escape malaria rapid diagnostic
tests in Ethiopia. Nat. Microbiol. 6 (10), 1289–1299. doi: 10.1038/s41564-021-00962-4

GMP (2009). Malaria case management : operations manual (World Health
Organization).

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning (MIT Press).

Horning, M. P., Delahunt, C. B., Bachman, C. M., Luchavez, J., Luna, C., Hu, L., et al.
(2021). Performance of a fully-automated system on a WHO malaria microscopy
evaluation slide set. Malaria J. 20 (1), 110. doi: 10.1186/s12936-021-03631-3

Howes, R. E., Patil, A. P., Piel, F. B., Nyangiri, O. A., Kabaria, C. W., Gething, P. W.,
et al. (2011). The global distribution of the Duffy blood group.Nat. Commun. 2 (1), 266.
doi: 10.1038/ncomms1265

Jimenez, A., Rees-Channer, R. R., Perera, P., Gamboa, D., Chiodini, P. L., González,
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