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a b s t r a c t

We seek to (i) characterize the learning architectures exploited in biological neural networks for
training on very few samples, and (ii) port these algorithmic structures to a machine learning context.
The moth olfactory network is among the simplest biological neural systems that can learn, and its
architecture includes key structural elements and mechanisms widespread in biological neural nets,
such as cascaded networks, competitive inhibition, high intrinsic noise, sparsity, reward mechanisms,
and Hebbian plasticity. These structural biological elements, in combination, enable rapid learning.

MothNet is a computational model of the moth olfactory network, closely aligned with the moth’s
known biophysics and with in vivo electrode data collected from moths learning new odors. We assign
this model the task of learning to read the MNIST digits. We show that MothNet successfully learns
to read given very few training samples (1–10 samples per class). In this few-samples regime, it
outperforms standard machine learning methods such as nearest-neighbors, support-vector machines,
and neural networks (NNs), and matches specialized one-shot transfer-learning methods but without
the need for pre-training.

The MothNet architecture illustrates how algorithmic structures derived from biological brains can
be used to build alternative NNs that may avoid the high training data demands of many current
engineered NNs.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Originally inspired by the biological structure of networks of
interacting neurons (Fukushima, 1980; Hubel & Wiesel, 1962;
McCulloch & Pitts, 1943; Rosenblatt, 1958), neural networks
(NNs) have since developed a suite of algorithmic tools (such
as backprop, convolutional kernels, etc.) which, combined into
complex and deep NN architectures, have achieved unprece-
dented success in a wide array of machine learning (ML) tasks
(Goodfellow, Bengio, & Courville, 2016; LeCun, Bengio, & Hinton,
2015; Schmidhuber, 2015). However, they have trouble learning
from few samples. We seek to improve NN performance on such
tasks by revisiting the well of biological example to characterize
key biological structures involved in learning, for transfer to the
NN context.

In this work, we apply MothNet, a NN architecture closely
based on the Moth Olfactory Network, to the task of learning
vectorized MNIST digits. MothNet successfully learns to read
given very few training samples (1–10 samples per class) and
in fact outperforms standard machine learning methods such as
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Nearest-Neighbors, support-vector machines (SVMs), Neural Nets
(i.e. standard fully-connected, feed-forward, non-convolutional
nets with softmax loss functions), and convolutional neural net-
works (CNNs), in the few-samples regime (Fig. 5). In addition,
it performs comparably to specialized one-shot learning NNs,
but without their need for pre-training to initialize NN weights
(Table 1).

The moth olfactory network is among the simplest biological
neural networks (BNNs) that can learn (Riffell, Lei, Abrell, &
Hildebrand, 2012).1 It is well-characterized, and it contains key
features widespread in BNNs, including high noise (Galizia, 2014),
random connections (Caron, Ruta, Abbott, & Axel, 2013), compet-
itive inhibition (Hong & Wilson, 2015), Hebbian synaptic growth
(Cassenaer & Laurent, 2007; Masse, Turner, & Jefferis, 2009), high-
dimensional sparse layers (Campbell & Turner, 2010; Honegger,
Campbell, & Turner, 2011), large dimension shifts between lay-
ers (Babadi & Sompolinsky, 2014), and generalized stimulation
of neurons during learning (Hammer & Menzel, 1998). It thus

1 References here include studies of various insect species. MothNet is based
on the moth olfactory network in particular, but draws on studies from other
insects to fill gaps where studies on the moth are lacking, subject to the
constraint that inter-species tranferability varies (the fly and moth are similar,
while locust and honeybee results are sometimes general enough to transfer,
sometimes not).
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Fig. 1. Network schematics. A: Biological schematic. Green lines show excitatory connections, red lines show inhibitory connections. Light blue ovals show plastic
connections into and out of the MB. The units in the AL competitively inhibit each other. Global inhibition from the lateral horn induces sparsity on MB responses.
The ENs give the final, actionable readouts of the system’s response to a stimulus. B: Alternative schematic of the same network. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

offers an ideal avenue to investigate biological learning and the
interacting components that make learning possible.

The olfactory processing unit centers on two interacting net-
works, the noisy antennal lobe (AL) and the sparse mushroom
body (MB), known as the AL–MB (Campbell & Turner, 2010;
Wilson, 2008). The AL pre-processes odor inputs, then projects
the odor signal forward to the MB, which in turn feeds forward
to readout neurons. Learning occurs when the neuromodula-
tory chemical octopamine (triggered by sucrose reward) induces
an overall increase in excitation in the AL (Dacks, Riffell, Mar-
tin, Gage, & Nighorn, 2012), causing the plastic MB synapses to
update via Hebbian (‘‘fire together, wire together’’) growth.

A computational model of a stand-alone honeybee MB
(i.e. without the AL or octopamine dynamics) was trained by
Huerta and Nowotny (2009) on the handwritten vectorized MNIST
digits dataset (LeCun & Cortes, 2010). The trained honeybee
MB attained over 80% accuracy given sufficient training samples
(200–2000 samples per class), indicating that the MB is to some
degree task-agnostic, i.e. not limited solely to odor processing.

MothNet is an end-to-end computational model of the Mand-
uca sexta (Hawk moth) olfactory network developed by Delahunt,
Riffell, and Kutz (2018b) to study the moth’s olfactory learn-
ing mechanisms. MothNet’s architecture is closely based on the
moth’s known biophysical structure. It includes the AL, the MB,
and readout neurons, as well as Hebbian plasticity and neuro-
modulatory stimulation by octopamine. Its behavior is calibrated
to, and consistent with, in vivo firing rate data recorded in moths
learning new odors. For full details see Delahunt et al. (2018b).

To test the generalizability of this learning architecture, we
assigned MothNet the ML task of identifying downsampled, vec-
torized MNIST digits (hereafter ‘‘vMNIST’’ to emphasize that the
inputs lack spatial structure). We made minimal modifications to
the MothNet architecture: We simply replaced odor inputs to the
AL neurons with pixel values, increased the number of AL units
from 60 to 85, and attached 10 readout neurons, one for each
vMNIST digit. MothNet routinely achieved 70%–80% accuracy
classifying test digits after training on 1–10 samples per class,
out-performing standard ML methods. These results demonstrate
that even a very simple biological architecture contains novel and
effective tools that are useful for ML tasks, in particular tasks
constrained by limited training data or the need to add and train
new classes without retraining the full NN.

2. The moth olfactory network and MothNet model

2.1. Moth olfactory network outline

The network is organized as a feed-forward cascade of five dis-
tinct networks, as well as a reward mechanism (Kvello, Løfaldli,
Rybak, Menzel, & Mustaparta, 2009; Martin et al., 2011). Fig. 1
gives a system schematic.

Starting at the Antennae, several thousand noisy chemical
Receptor Neurons (RNs) detect odor and send signals to the
Antennal Lobe (AL) (Masse et al., 2009; Wilson, 2008). Most of
these RNs are narrowly tuned (to 1 or 2 chemicals), while others
are more broadly tuned (Shields & Hildebrand, 2001). Each RN
type converges onto one of roughly 60 isolated units (glomeruli)
in the AL (Martin et al., 2011). The AL acts as a pre-amp, pro-
viding gain control and sharpening odor codes through lateral
inhibition (Bhandawat, Olsen, Gouwens, Schlief, & Wilson, 2007).
The AL projects odor codes forward to the Mushroom Body (MB)
(Campbell & Turner, 2010), in excitatory Projection Neurons (PNs)
that randomly connect (non-densely) to MB neurons (Caron et al.,
2013).

The MB contains about 4000 Kenyon Cells, which fire sparsely
and encode odor signatures as memories (Honegger et al., 2011;
Perisse, Burke, Huetteroth, & Waddell, 2013) (we use ‘‘MB’’ as
a synonym for these Kenyon Cells). Sparsity in the MB is en-
forced by global inhibition from the Lateral Horn (Bazhenov &
Stopfer, 2010). The MB feeds forward to Extrinsic Neurons (ENs),
numbering ∼10’s, which are ‘‘readout neurons’’ that interpret the
MB codes and deliver actionable output to the rest of the moth
(Campbell et al., 2013; Hige, Aso, Rubin, & Turner, 2015).

The network can learn: In response to reward (sugar
at the proboscis), several neurons release the neuromodulator
octopamine globally in the AL and MB (Dacks, Christensen, Agri-
cola, Wollweber, & Hildebrand, 2005) (for dopamine (Dacks et al.,
2012); for honeybees (Hammer & Menzel, 1995, 1998)). Oc-
topamine stimulates AL neurons, inciting higher firing rate re-
sponses to the reinforced stimuli (e.g. the in vivo data used in
Delahunt et al., 2018b and Dacks et al., 2012 for dopamine). This
in turn induces growth in the plastic synaptic connections into
the MB (AL→MB) and out of the MB (MB→ENs) via Hebbian
updates (Cassenaer & Laurent, 2007; Masse et al., 2009). Learn-
ing does not occur without this octopamine input (Hammer &
Menzel, 1995, 1998).

2.2. MothNet model

The MothNet computational model closely follows this
biological architecture in terms of connections, numbers of
neurons in each layer, etc. (Delahunt et al., 2018b). Neural fir-
ing rates are modeled with firing-rate dynamics (Dayan & Ab-
bott, 2005) evolved as stochastic differential equations (SDEs)
(Higham., 2001):

τ
dx
dt

= −x + s(Σwiui) = −x + S(w · u) + dW , (1)

where x(t) = firing rate (FR) for a neuron; w = connection
weights; u = upstream neuron FRs; S() is a sigmoid function or
similar; and W (t) = a Brownian motion process.
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In MothNet this equation is modified by an inserted term to
model the stimulative effect of octopamine on the AL during
learning, since this effect is central to learning in the computa-
tional model (Delahunt et al., 2018b). The model uses a simple
model of Hebbian plasticity for synaptic weight updates (Dayan
& Abbott, 2005; Hebb, 1949; Roelfsema & Holtmaat, 2018):

∆wab(t) = γ fa(t)fb(t) (2)

where fa(t), fb(t) are firing rates of neurons a, b at time t; wab
is the synaptic weight between them; and γ is a growth rate
parameter.

In addition, inactive MB→EN weights are subject to propor-
tional decay:

∆wab(t) = −δwab(t), if fa(t)fb(t) = 0. (3)

where δ is a decay parameter. There are two layers of plastic
synaptic weights: AL→MB, and MB→ENs (i.e. pre- and post-MB).
Hebbian plasticity is assumed to be ‘‘switched on’’ by reward,
so it is cosynchronous with octopamine. Thus, plasticity only
occurs during training sessions. There is no built-in stabilization
of weight updates, except the upper and lower (i.e. 0) rails of
allowable weights. As seen in Fig. 7, sparsity in the MB is crucial
to prevent Hebbian weight updates from running out of control
and amplifying noise channels.

For the vMNIST task, MothNet has 10 extrinsic neurons (ENs),
that start with identical MB→EN connections. When training
begins, these 10 ENs are randomly assigned to target particular
digits 0 to 9. Once ENs are assigned, training is supervised: When
a digit of class j is presented, only MB→ENj connections are
updated, where ENj is the EN assigned to class j. That is, the
system knows the class of the training sample, for the purposes
of post-MB updates. Training rapidly individualizes these weights
according to their target digits. In contrast, all pre-MB connec-
tions are updated in every case, since these connections are
common to all inputs (in these experiments, pre-MB connections
were essentially fixed due to slow learning rates).

We note that in MothNet, updates do not follow the same
logic as in typical ML algorithms: There is no objective function
to be minimized, and no output-based loss that is pushed back
through the network as with backprop or agent-based reinforce-
ment learning (there is no ‘‘agent’’ in the MothNet system). The
Hebbian weight updates, either growth or decay, occur on a
purely local ‘‘use it or lose it’’ basis.

3. Methods

3.1. Training data

We did not use the MNIST dataset in its usual format of images
with spatial structure. Rather, we derived an 85-feature, 10-class
dataset, with no spatial information, from the MNIST dataset.
MNIST images (from PMTK3, Murphy, 2012) were downsampled
and vectorized, and pixel values then served as input features. Of
course both biological and engineered systems routinely choose
better feature sets. However, pixels-as-features provided a good
test of whether MothNet can effectively learn to discriminate
classes given inputs with inter-class correlations.

MothNet maps features to units in the AL in 1-to-1 fashion
(a simplification of biological reality). Using full MNIST images,
vectorized to give pixels-as-features, would imply 282

= 784 AL
units. To keep the scale of MothNet somewhat close to that of the
actual moth (60 AL units), we preprocessed the images as follows:

1. Crop by 2 and downsample by 2 (linear interpolation),
to get 12 × 12 images (shown in Fig. 2).

2. Mean-subtract using 500 random, set-aside digits (50
from each class) and zero out negative values.

3. Select the most-active pixels by thresholding the various
class averages. The purpose is to retain the most globally active
pixels while also preserving the most active pixels of each class,
and to exclude border pixels which supply little information. This
step was part of the dataset definition, not part of training, and
did not involve the MothNet model.

4. Vectorize the remaining pixels.
Each retained pixel became a feature that fed into one unit

of MothNet’s AL. The experiments described here used 85 pixels
(out of 122

= 144 total) to represent the vMNIST digits. This gave
MothNet 85 units in the AL and 2550 neurons in the MB (i.e. 30
times the number of AL units). Examples of dowsampled images,
before vectorization and restriction to the receptive field pixels,
are shown in Fig. 2.

3.2. Experiment design

Instances of MothNet are randomly generated from parameter
templates. Particular MothNet behaviors can be modulated by
varying one or two template parameters. Each experiment used a
fixed basic template, modified only by varying the parameter(s)-
under-test. Each of these modified templates then randomly gen-
erated many MothNet instances, typically 13–17 per data point.
The basic templates varied slightly between experiments, e.g. in
some parameter values. We found that these slight differences in
template had minor effect, and that a wide range of parameters
and templates delivered effective learning behavior.
Each experiment contained three stages:

1. Pre-training Baseline (15 digits per class), used to assess
naive classifier accuracy;

2. Training (N digits per class, randomly ordered);
3. Post-Training Validation (15 digits per class), used to assess

post-training classifier accuracy.

Digits for each stage were randomly chosen without replace-
ment from non-intersecting pools. Using more than 15 digits in
baseline and validation sets did not significantly affect results.

Since the moth olfactory system can learn to recognize a new
odor given roughly 8–10 samples (Riffell et al., 2012), we focused
on small training sets (1–20 samples/class). In some experiments,
training included multiple ‘‘sniffs’’, i.e. repeated presentations of
each sample. The order of training samples did not matter, per-
haps because the strongest plasticity was specific to the readout
neuron (EN) targeting a given class.

3.3. Classifiers

System readout units are the Extrinsic Neurons (ENs) down-
stream from the sparse MB layer and its plastic connections.
These ENs are silent absent any input sample, and they consis-
tently respond, more or less strongly, to input samples (see Fig. 3).
We use two different classifiers to assess MothNet performance,
both dependent on the EN readouts.

3.3.1. Softmax classifier
The first method is the basic softmax:

ŝ = max
j∈J

{
eEj(s)∑
i∈J eEi(s)

}
, where (4)

ŝ = predicted class of sample s
Ei(s) = response of the ith EN to s
j ∈ J are the classes (0–9).
This is tantamount to prediction based on the strongest EN

response. In NNs, the softmax rule is typically baked into the
loss function, so it is a logical classifier to use, by construction.
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Fig. 2. Cropped, downsampled, mean-subtracted and zero-thresholded MNIST digit images (pre-processing steps 1 and 2), shown before further sub-selection of
globally most-active pixels and vectorization (steps 3 and 4). Vectors of these pixels were the feature vectors for the experiments.

Fig. 3. EN time courses for a typical MothNet experiment before and after training, showing how training causes the class response distributions to diverge in each
EN. Each block of spikes shows the time-course of an EN’s response to 150 digits (15 ones, then 15 twos, etc.). The variation in response (spike height) to digits
of a single class reflect variations in the digits and also effects of AL noise. The top left block shows the naive responses (all ENs had similar responses). The blue
arrow represents the training stage. The numbered blocks show the responses of the various ENs to 150 validation digits after training has completed. The EN’s
responses to digits in the targeted class are framed in red, and some confounding class responses in dashed red). This figure shows results of time-evolutions from
one MothNet instance. The equivalent statistical results, over several MothNet instances, are shown in Fig. 4.

However, we see no reason that it would be well-suited to a
network that uses Hebbian updates. In particular, a Hebbian
update method does not constrain the scales of the various EN
responses to match each other, as happens in a standard NN with
softmax-based loss function.
3.3.2. Log-likelihood classifier

We thus use a second classifier as well, which tries to capture
the combined statistical content of the various EN readouts with-
out assuming that the EN responses match each other in scale.
This classifier is a summed log-likelihood over the distributions
of responses to each digit class in each EN:

ŝ = min
j∈J

⎧⎨⎩∑
i∈J

(
Ei(s) − µEij

σEij

)4
⎫⎬⎭ , where (5)

ŝ = predicted class of sample s
Ei(s) = response of the ith EN to s
µEij = mean(Ei(t)|t ∈ V and t ∈ class j)
σEij = std dev(Ei(t)|t ∈ V and t ∈ class j)
j ∈ J are the classes (0–9)
V is a reference set (e.g. a validation set).
Roughly, j is a strong candidate for ŝ if each EN’s response to s

is close (in Mahalanobis distance) to that EN’s expected response
to class j. The use of the 4th power (vs the usual 2nd power) is a
sharpener that penalizes outliers.

This summed log-likelihood is a measure of how well the ENs
can separate the response distributions to various classes, com-
bining information from all ENs and including information about
responses to classes not specifically targeted by a particular EN.
The goal of this classifier is to assess how much discriminatory

information MothNet was able to extract from the training data.
We do not wish to imply it is biologically realistic (we do not
know). Accuracy of naive (i.e. untrained) MothNet instances was
about 15% using the log-likelihood classifier, slightly higher than
random guessing, perhaps because the digit ‘‘1’’ often elicited
slightly different naive responses than other digits.

For a given experiment, the post-training classification ac-
curacy was calculated on the validation set, i.e. the same set
was used to estimate the post-training EN response distribution
parameters µE and σE. Similarly, the baseline (pre-training) clas-
sification accuracy was calculated on the same baseline set used
to estimate naive EN response distribution parameters. Holdout
sets had similar accuracy.

3.3.3. Pros and cons
The softmax classifier does not require a validation set, and

thus is a more realistic candidate for true few-shot learning,
where by definition no validation set is available. However, it is
an arbitrary choice for systems that use a Hebbian learning rule,
especially since the Hebbian rule does not ensure a built-in means
of scaling EN responses. Thus softmax may be ill-suited to reflect
the full information of the trained network effectively.

The Log-likelihood classifier can arguably claim to better lever-
age the information contained in a Hebbian-trained network, and
it is robust to differences in scale of EN responses. However,
it requires a validation set for its hyperparameters. In few-shot
scenarios, while it may well express the stored learning of the
network it is not a practical in-the-field classifier.

We find that in practice, each classifier has strengths. In par-
ticular, the log-likelihood is stronger given few training samples,
while softmax is stronger given many training samples. We report
results for both.
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4. Experiments and results

This section first presents (i) results of MothNet experiments
focused on learning. It next gives baseline comparisons of Moth-
Net to (ii) standard ML methods, and (iii) specialized ML one-shot
methods. It then presents further results of MothNet experiments
focused on (iv) one-shot learning, (v) sniffing, (vi) effects of AL
noise, and (vii) MB sparsity. Computer code for running simu-
lations and experiments in this paper can be found at: https:
//github.com/charlesDelahunt/PuttingABugInML

4.1. Learning experiments

We ran training experiments with various MothNet templates
to assess their ability to learn the vMNIST digits. In general, a
wide range of templates responded well to training by differ-
entiating their EN responses to different digits (input classes).
In naive (untrained) MothNet instances, all ENs had the same
response profile, and responded similarly to all digit classes, as
expected given the symmetry of random connection weights to
the various ENs. Training caused EN responses to rapidly diverge
from baseline and from each other, such that each EN responded
most strongly to its assigned digit. Common effects of training
included:

1. Most ENs (e.g. 1, 2 6, 7, 0) tended to amplify the response
to their trained digit very well, compared to responses to
control digits. This gave strong separation and accurate
classification.

2. A few ENs (e.g. 5) sometimes poorly separated their trained
digit from control digits. These were the digits most often
misclassified during validation.

3. Some ENs consistently boosted the responses to certain
control digits along with their trained digit (e.g., EN9
boosted 4 and 7, EN4 boosted 7 and 9). These cases typically
reflected visible similarities in the digits, and led to charac-
teristic errors. For example, 9s, if misclassified, were often
misclassified as 4s. However, 9s were not misclassified as
7s, because EN7 usually strongly separated 7 from 9. That
is, outputs of EN9, EN7, and EN4 combined were sufficient
to distinguish 9 from 7, but not always 9 from 4.

These behaviors are evident in Fig. 3, which shows time-
courses of EN firing rate responses, pre- and post-training, for
a typical MothNet instance. Each subplot shows EN response
to 150 digits (15 ones, then 15 twos, etc.). The post-training
responses are normalized by the EN’s mean trained class response
for clarity. Training typically increased and/or decreased all class
responses of an EN, but to different degrees, resulting in the
separations seen in the normalized timecourses. Mid-training
responses are excised from the timecourses to save space; these
responses were consistently much stronger due to the stimulating
effect of octopamine injected during training, and would extend
past the top of the plot.

Fig. 4 plots EN response distribution statistics (mean ± std
dev) from a typical experiment, in which 13 MothNet instances
were generated from a template then trained on 15 samples
per class. Post-training accuracy (log-likelihood) for MothNet in-
stances of this template was 71%–83%, starting from ∼15% base-
line accuracy. Similar results, both accuracies and limitations
(such as confusing 4s and 9s) held for a wide range of parameter
templates and training regimes. These learning experiments in-
dicate that a model closely based on the moth olfactory network
can rapidly learn to read handwritten digits. This aptitude was
qualified by an apparent upper limit of about 80% on mean
population accuracy (though gifted individuals attained up to
85% accuracy), given such constraints as the restriction to ‘‘nat-
ural’’ model parameters, downsampled images, and the use of
vectorized (non-spatial) input features.

4.2. Comparison to standard ML methods

To set a learning performance baseline, we trained four stan-
dard ML methods (Nearest Neighbors, SVM, Neural Net, and CNN)
in the limited-training-data regime (N ≤ 100 samples per class),
using the same downsampled, non-spatial dataset (except CNN,
see below). Hyperparameter values can strongly affect algorithm
performance. We applied due diligence in optimizing hyperpa-
rameters for these ML models, and we feel our optimizations are
strong, though we of course do not guarantee that they are the
last word. Full hyperparameter details are given in S.I. and in the
online codebase.

We note that while these ML methods can attain over 99%
accuracy on the full MNIST training set (6000 samples per class,
with spatial structure) (LeCun et al., 1995), the few-samples
regime is fundamentally different, and standard ML methods are
evidently not well-suited to it, compared to biological systems.
This few-samples regime requires that (for MNIST) one ignores
99.9% of the usual training data. In addition, the downsampling
and vectorization of input images affect accuracy.

Given N < 10 training samples per class, MothNet (with
log-likelihood classifier) substantially out-performed all the ML
methods, and slightly outperformed ML methods at N = 10
(Fig. 5). However, MothNet (log-likelihood) appears to have lim-
ited capacity, and maxed out at a mean accuracy of ≈75%. Thus,
the ML methods began to pull ahead of MothNet (log-likelihood)
at N = 30–100, depending on ML method.

MothNet (with softmax classifier) had similar accuracy to the
NN, outperforming NNs at N = 1 and being roughly equivalent
thereafter. The ML methods never pulled ahead of MothNet (soft-
max) for N ≤ 100. Mean post-training accuracies of the various
methods are plotted in Fig. 5, vs number of training samples per
class.

Classifier details. The MothNet accuracies shown in Fig. 5 are
for MothNet instances randomly generated according to tem-
plates from Delahunt et al. (2018b), with various learning rates
and numbers of ‘‘sniffs’’ (see 4.4 and 4.5 for details). Nearest-
Neighbors and SVM used built-in Matlab functions with z-scaled
input features, and with other hyperparameters (number-of-
neighbors, box constraint) optimized for each N . The Neural Net
was coded in Tensorflow. It had one hidden layer with 85 units
(more layers and/or units did not help), Gaussian noise, and
dropout. Learning rate and number of epochs were optimized for
each N . For Nearest Neighbors, SVM, and NN, the features were
the 85 vectorized pixels from images pre-processed exactly as for
MothNet.

The CNN was a packaged Matlab example, with the number of
epochs optimized for each N . Alone of all the methods, the CNN
used standard MNIST (28 × 28) images with spatial content, on
which it can attain >99% accuracy given N ≥ 500. Using full-sized
images obviated the need to alter the CNN network parameters
to fit smaller images, and thus guaranteed a capable architecture.

MothNet with log-likelihood classifier uses statistics from the
validation set, as described in 3.3. MothNet with softmax classifier
does not, in common with the ML methods.

4.3. Comparison to ML one-shot methods

A variety of ML methods focus on one-shot learning. These
have been tested on Omniglot, an MNIST-like dataset with 1623
alphabetic characters with 20 samples each, created and intro-
duced by Lake, Salakhutdinov, and Tenenbaum (2015). Some of
these ML methods were also applied to MNIST.

We applied MothNet to the Omniglot dataset, and where
possible compared it with published results from these one-shot
ML methods, on both Omniglot and vMNIST.

https://github.com/charlesDelahunt/PuttingABugInML
https://github.com/charlesDelahunt/PuttingABugInML
https://github.com/charlesDelahunt/PuttingABugInML
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Fig. 4. Statistics of EN response distributions, before and after training, from 13 MothNet instances, showing how training causes the class response distributions to
diverge in each EN. The top left subplot shows an EN’s naive responses (all ENs had similar responses). The blue arrow represents training.
The numbered subplots show the situation post-training: Let µij be the mean response of the ith EN to digits of class j in a single MothNet experiment (µij will
be different pre- and post-training). Let σij be the std dev of the ith EN’s responses to digits of class j in that same MothNet experiment (σij will be different pre-
and post-training). Then in the ith numbered subplot, the jth dot gives the mean(µij), and the jth bar gives ± mean(σij), over post-training µij and σij from 13
MothNet instances. The EN’s responses to digits in the targeted class are in blue, and responses to the non-targeted classes are in gray. Mean trained accuracy for
this template was 76%, range 71%–83%. This figure is a population-level, statistical analogue to the individual MothNet results shown in Fig. 3. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Bug vs machine: Mean post-training accuracy vs log of N = training samples per class. Results are shown for MothNet (in red), as well as for Nearest-Neighbors,
SVM, and Neural Nets (all on downsampled vMNIST, i.e. no spatial info); and CNN (on standard MNIST). At N < 10 training samples per class), MothNet significantly
outperformed standard ML methods. Bars show std devs. 13 runs per data point. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

We note that these methods have distinct goals beyond the
one-shot learning task. Lake, Salakhutdinov, Gross, and Tenen-
baum (2011) seeks insight into human transfer learning via ex-
traction of stroke patterns from drawn characters. Woodward
and Finn (2017) explores an active learning system to speed
up learning via good training sample choice. MANN (Santoro,
Bartunov, Botvinick, Wierstra, & Lillicrap, 2016) augments a NN
with an external memory. The Matching Network (Vinyals, Blun-
dell, Lillicrap, Kavukcuoglu, & Wierstra, 2017) also adds external
memory to a NN or CNN, and has success on complex datasets
(e.g. ImageNet). The Siamese Network (Koch, Zemel, & Salakhut-
dinov, 2015) uses pairs of NNs or CNNs to develop a similarity
detector which, tuned by pre-training, can detect similarities in
new class instances. The Neural Statistician (Edwards & Storkey,

2016) learns to compute statistics of new datasets from few sam-
ples. (The Ladder Network (Rasmus, Valpola, Honkala, Berglund,
& Raiko, 2015) leverages a small labeled training set and a large
unlabeled training set from the same classes, a powerful method
but for a use-case not treated here.) This diversity of goals makes
comparison between methods somewhat beside the point, and
does not do justice to the various strengths of the methods.
However, the results give evidence that MothNet performance on
this one-shot task is comparable to that of specialized one-shot
ML methods.

All comparisons were for one-shot learning. Test datasets in-
cluded vectorized Omniglot with 20 and with 5 test classes, and
vMNIST. Methods that required spatial datasets were omitted.
A major difference in the methods is that all the ML methods
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Table 1
Comparison of one-shot methods on vectorized datasets.
Method Test data # pre-training Test accuracy (%)

Siamese NN Omniglot 20x 24k 58
MANN 24k 61 (15x)
MothNet (Softmax) 0 31
MothNet (logLike) 0 65

MANN Omniglot 5x 24k 82
Woodward/Finn 24k 72 (2-shot)
MothNet (softmax) 0 57
MothNet (logLike) 0 76

Siamese NN vMNIST 10x 24k See text
MothNet (softmax) 0 47
MothNet (logLike) 0 72

Notes: Results for ML methods are drawn from their papers, and are restricted to methods that
were tested on vectorized datasets. For ML methods’ accuracy on vMNIST, see ‘‘Results on vMNIST’’
in text. Mann Omniglot 20x results are for 15, not 20 classes ( ‘‘15x’’). Woodward/Finn Omniglot 5x
results are for two training samples per class (‘‘2-shot’’). MothNet results on Omniglot are averages
over 11 runs, each with randomly selected target classes.

require pre-training on a large set of samples from separate-
but-similar classes (transfer learning), while MothNet assumes no
pre-training option.

Due to the larger size of Omniglot images, the number of input
features in MothNet’s architecture was increased from 85 to 200,
with MB size increased proportionally. Because Omniglot images
are pure binary, they were smeared with a 2-D Gaussian before
vectorization and input to MothNet.

Results on vectorized Omniglot 20x and 5x. MothNet
(log-likelihood) was similar to ML methods, while MothNet (soft-
max) trailed all ML methods (Table 1). Thus, while the MothNet
model arguably encodes an equally strong classifier, it cannot
access its full potential without using a validation set.

Results on vMNIST. No non-spatial ML methods reported results
on vMNIST. However, there were two clear trends in ML methods’
accuracies:
(i) ML methods’ performances on spatial MNIST were roughly 20%
lower than their performances on spatial Omniglot (Siamese CNN
92→70%; Matching CNN 94→72%; Neural Statistician 93→79%),
presumably due to mismatch between the MNIST characters and
the Omniglot characters used for pre-training. In contrast, Moth-
Net’s accuracy was similar on Omniglot and vMNIST tasks. (ii) ML
methods’ performances on non-spatial Omniglot were lower than
on spatial Omniglot (e.g. Siamese NN vs CNN, 58% vs 92%).

Combining these two trends we estimate that MothNet (soft-
max) accuracy was similar to, and MothNet (log-likelihood) ac-
curacy exceeded, the projected performance of ML methods on
vMNIST. For example, Siamese NN accuracy on vMNIST might be
estimated from CNN accuracy on spatial MNIST and the ratio of
spatial (CNN) vs vectorized (NN) Siamese accuracies on Omniglot,
i.e. 70( 9258 ) ≈ 44 ≈ MothNet (softmax), and ≪ MothNet (log
likelihood).

To summarize results of one-shot learning on these vectorized
datasets:

(i) When the Test set closely matched the pre-training data,
MothNet encoded a similar amount of class information as the
ML methods, but required a validation set to fully access it.

(ii) When the Test set was somewhat distinct from the pre-
training data (i.e. vMNIST vs Omniglot), MothNet encoded more
class information and attained similar or higher accuracy.

(iii) MothNet (uniquely) needed no pre-training.

4.4. Growth rate effects, one-shot learning

The speed at which MothNet learns, i.e. the number of training
samples required to reach maximum accuracy, is determined to
large degree by the Hebbian growth rate, and the related decay

rate, on MB→EN connections. When the connection weights hit
the rails of their dynamic range, no further learning is possible
(we did not modify the maximum synaptic weight constraints).
We ran experiments to study the effect of Hebbian growth rates
on post-training accuracy, given various training set sizes. One
MothNet template (the ‘‘natural learner’’) had a biologically plau-
sible growth rate, while the second template (the ‘‘fast learner’’)
had a growth rate ‘‘turned up to 11’’. High growth rate templates
allowed us to test MothNet’s skill at one-shot learning (i.e. given
just one training sample per class).

Fast learners attained strong immediate accuracy (mean 75%)
on just one training sample, but additional training samples pro-
vided no further gain. This is because the MB→EN synaptic
weights have fixed outer rails: Growth must stop when wij hits
the top rail, and decay must stop when wij = 0.

Natural learners took several (∼20) training samples to attain
maximum accuracy, but that final accuracy was slightly higher.
The trade-off of learning speed vs maximum attained accuracy is
seen in Fig. 6A. The solid curves show fast- and natural-learner
accuracies vs number of training samples.

4.5. Sniffing, effects of AL noise

Sniffs. Biological NNs have a remarkable ability to learn from
very few training samples. In addition, ‘‘sniffing’’ behavior (re-
peated sampling of a given odor) is a common biological strategy
(Martin et al., 2011; Wilson, 2008). We ran experiments to see
whether sniffing behavior improved the various stages of learn-
ing. Sniffing applied to test samples did not improve test accuracy
(experiments not shown).

However, sniffing during training had a strong effect, espe-
cially in one-shot regimes. When a ‘‘natural learner’’ (i.e. with
learning rate set to a biologically reasonable level) was given
a single training sample (one-shot), multiple sniffs raised post-
training accuracy from 35% to over 60%. Five sniffs delivered
maximal increase, with no further gains from additional sniffs.
This increase in accuracy due to sniffing in the one-shot context
is seen in Fig. 6B. The use of sniffing may partly explain why
MothNet was able to reach 80% accuracy with fewer samples per
class (20 vs 200+) than the honeybee MB model in Huerta and
Nowotny (2009).

AL noise. The moth AL is a very noisy system. That is, neural
responses to a given odor stimulus (or absent any odor) have high
variance. To see whether this AL noise was beneficial to learning
performance, we also varied the AL noise level in MothNet during
the sniffing experiments, from near-zero through the high end
of biologically reasonable (per in vivo data). We had expected
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Fig. 6. A: Effects of learning rate parameters. Mean accuracy ± std dev (µ±σ ) for a natural learner (red), a fast learner (blue), and a learner using softmax classifier
(green). For all data points, number of sniffs was varied to maximize trained accuracy. The fast learner attained 75% accuracy in one-shot, but with no further gains.
The natural learner started lower but ultimately attained higher accuracy. There was no difference between fast and natural learners using Softmax. B: Effects on
one-shot learning of (i) AL noise and (ii) sniffing. (i) AL noise: Each cluster of µ ± σ bars represent varying levels of AL noise, with low-to-high noise plotted in
different colors from left-to-right at each x-axis location. AL noise level did not affect accuracy. (ii) Multiple sniffs greatly improved one-shot accuracy. Results for a
‘‘natural’’ learner with log-likelihood accuracies are shown; Softmax results were similar. 13 MothNet instances per data point. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

the presence of AL noise to improve performance, given multiple
sniffs, by acting as a kind of sample augmentation, analogous to
that used in deep NN training. In fact, noise levels in the AL had
no effect on accuracy. This is seen in Fig. 6B, where each cluster
of mean ± std dev bars shows different levels of AL noise for a
given number of sniffs.

4.6. Sparsity experiments

High-dimensional, sparse neural layers are a widespread motif
in biological NNs (Ganguli & Sompolinsky, 2012). To examine the
effects of sparsity in the context of learning, we trained a reason-
ably capable MothNet template, varying only the sparsity level
in the MB during training (17 MothNet instances per sparsity
level). Sparsity here is measured as the fraction of MB neurons
that are responsive to stimuli (1% is very sparse, 50% is very
dense). In MothNet, MB sparsity levels (in both non-training and
training modes) are parameters. Sparsity levels in the MB affected
two crucial behaviors: Intra-class signal-to-noise ratio (SNR) of
EN responses; and how well a given ENj’s response to training
focused on class j (learning focus).

Results show that the sparse MB layer plays a key role in
learning by controlling and focusing Hebbian weight updates.

High MB response fraction (i.e. high density, or low sparsity)
correlated strongly with high SNR (i.e. reliability of intra-class
EN responses). But it also resulted in poor post-training classifier
accuracy, because Hebbian growth was not focused: Rather, it
boosted all weights due to the excess of active MB neurons, so
weight increases into a particular EN were not restricted to just
the most class-relevant signals. The trained EN then responded
strongly to all digits rather than just its target digit.

Conversely, low MB response (i.e. high sparsity) resulted in
low intra-class SNR, since not enough MB neurons would fire in
response to a digit for reliable activation of the ENs. But high
sparsity correlated strongly with high ‘‘learning focus’’: Training
focused gains on the correct class, ensuring that ENs’ responses
to their targeted digits were preferentially strengthened. This
resulted in stronger post-training accuracy.

Post-training discrimination accuracy appeared to represent a
tradeoff between intra-class SNR and learning focus. This tradeoff
is shown in Fig. 7, which plots these effects of different sparsity
levels in the MB, as they relate to learning:

Learning focus. (red curve) This plots a figure-of-merit defined as
the average standardized distance between EN response distribu-
tions to trained and control classes,

LF =
1
9

∑
i̸=j

(µEjj − µEji)
0.5(σEjj + σEji)

, notation as in Eq. (5). (6)

This is average Bhattacharyya distance if EN response distribu-
tions are Gaussian. In very sparse regimes training was strongly
focused on the trained class, while in dense regimes training
‘‘raised all boats’’ and the trained response distributions were
poorly separated. Thus high sparsity focused learning well, and
low sparsity diluted it. This finding matches results in Huerta and
Nowotny (2009) and Peng and Chittka (2017).

Intra-class signal-to-noise ratio. (black dotted curve) This plots
the mean intra-class signal-to-noise ratio (SNR):

SNR =
µ(f )
σ (f )

where f = EN odor response; (7)

This was an opposite situation: A very sparse MB resulted in
high intra-class variance in trained EN responses (low SNR), while
a denser MB delivered much more consistent within-class re-
sponses (high SNR).

Trained accuracy. (blue curve) This is a fit to post-training classi-
fier accuracies (a natural objective function) from experiment.

Judged by best post-training classification accuracy, optimal
MB sparsity level for MothNet appears to represent a compro-
mise between delivering sufficient intra-class SNR and sufficient
‘‘learning focus’’ for inter-class distinctions. This optimal region
lies somewhere between 5% and 20%, consistent with the 5%–15%
commonly observed in live BNNs.

5. Discussion

5.1. A biological toolkit for building NNs

Our goal has been to provide a proof-of-concept as to the
learning abilities of even the simplest of biological neural net-
works (BNNs), and to clarify how a NN built from biological
elements learns a predictive model for a general ML task.

In order to learn new odors, the moth olfactory network
uses just a few core tools: A noisy pre-processing network with
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Fig. 7. Effects of MB sparsity on learning: Blue domed curve = a fit to mean trained accuracies, which peaked at 5%–20% sparsity, a compromise between learning
focus and high intra-class signal-to-noise ratio (SNR). Means ± std devs (µ ± σ ) are shown. Red curve = µ ± σ of learning focus (separation of responses to trained
vs control digits). Black dotted curve = µ ± σ intra-class SNR. Learning focus and SNR are scaled to [0, 1] for plotting. 17 MothNet instances per sparsity level.

competitive inhibition; Hebbian plasticity controlled by a high-
dimensional sparse layer; and generalized (global) stimulation
during training.

Our key finding is that a neural net built with this biological
toolkit can succeed at a general rapid-learning task, and in fact
can out-perform standard ML methods. MothNet learned to read
vMNIST digits, increasing its accuracy more than 5× (from 15%
to 75%–80%) given only a few training samples (1–20 per class).
Also, because Hebbian weight updates focus entirely on activity
induced by the class being trained (not on activity induced by
control classes, as in backprop), new classes can be added and
trained without retraining on existing classes. Further, the bi-
ological tools analyzed here are well-suited to being combined
and stacked into larger, deeper neural nets, just as convolutional
kernels, maxpool, etc., are combined to build current DNNs.

In these experiments the MothNet model stayed close to the
moth’s very simple olfactory architecture, and used a simple fea-
ture set as input (pixels). That a NN based on a moth, i.e. a bottom
rung on the ladder of biological neural complexity, can match or
exceed current ML methods on some problems argues for the
potential value of applying BNN-based tools in the ML context.
The success of live BNNs at a wide range of tasks further argues
for this potential. We believe that a free hand with network
design, such as using better input features, biologically-unrealistic
model parameters, and more complex architectures, would yield
strong results in a variety of tasks.

5.2. The rapid learning regime

It is not, on reflection, surprising that an insect brain might
out-perform ML methods at a few-samples learning task. First,
BNNs in general excel at rapid learning from few samples. Second,
in the typical ML context, such as a competition or a comparison
with other methods using well-defined benchmarks, the number
of training samples is fixed and is often high (e.g. 60,000 for
MNIST). The competitive pressure is to maximize accuracy, with
no penalty for using lots of training data. In sharp contrast, an
insect pays a high cost for every extra training datum, and their
competitive pressure is to very rapidly attain ‘‘good-enough’’
accuracy.

These two regimes complement each other, and there are
applications where it may be advantageous to pair a fast, rough
learner with a slower, more precise learner. One example might

be an adaptive controls learner for a drone: If the drone collides
in mid-air and loses an engine, you eventually want to learn a
new, optimal control strategy for the reduced system. But the
first necessity is to learn a ‘‘good enough’’ control strategy very
fast, before crashing, to allow time for the subtler system to
train. Another example might be a multi-stage bootstrap labeling
scheme when labeled data are scarce: In the initial stage, given
just one or a few labeled samples, the fast learner might classify
and apply labels to more samples (perhaps keeping only those
with the most certain labels) until there are enough labeled
samples to train a subtler system as the second stage labeler.

5.3. Role of the Hebbian update rule

We hypothesize that the ability of BNNs such as MothNet to
generalize well from very few samples is related to the Hebbian
update mechanism, which operates differently than statistically-
based optimizers. It has no objective function or output-based
loss that is pushed back through the network as in backprop or
agent-based reinforcement learning. Rather, weight updates oc-
cur on a purely local ‘‘use it or lose it’’ basis. Typical ML optimiz-
ers, such as backprop, excel at interpolation (Mallat, 2016), but
arguably not extrapolation. Perhaps Hebbian update rules, which
strengthen or decay connection weights according to amount of
traffic during learning episodes, enable effective generalization
outside the convex hull of interpolation.

5.4. Role of the sparse layer

A second finding emphasizes the key role of sparse layers
during learning. Sparse, high-dimensional layers are a widespread
motif in biological neural systems, especially in networks related
to memory and plasticity (Ganguli & Sompolinsky, 2012). In the
MothNet model, the sparse layer (MB) plays a vital role in learn-
ing because all the plastic synapses connect into or out of the
sparse layer, allowing it to modulate the Hebbian updates to the
synaptic connections by taking advantage of the fact that Hebbian
growth is an AND gate (‘‘fire-together, wire-together’’) (Delahunt
et al., 2018b). This ensures that learning boosts the important
signal (i.e. the signal associated with a given sample) and not
artifacts.

While the sparse MB layer calls to mind the backprop sparse
autoencoder (Ng, 2010), the biological role described here has no
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obvious analogue in backprop sparse encoders, since it is tied to
the Hebbian update method. However, biological sparse layers
may also perform functions similar to those found in backprop
sparse autoencoders, such as reducing noise (Vincent, Larochelle,
Bengio, & Manzagol, 2008) and reducing the dimension of the
feature space in order to better match the essential dimension
of the classification task (Makhzani & Frey, 2013).

5.5. Role of competitive inhibition

A key feature of the AL layer is competitive inhibition between
units, each of which receives input from exactly one feature. This
competitive inhibition may enable rapid learning by creating sev-
eral attractor basins for inputs, each focused on a particular class
according to which features present most strongly. This might
serve to push otherwise similar samples (of different classes)
away from each other, towards their respective class attractors,
increasing the effective distance between the samples. Thus the
outputs of the AL, after this competitive inhibition, may have bet-
ter separation by class. The fact that the MothNet model includes
an AL may be one reason it was able to learn more rapidly than
the honeybee MB-only model in Huerta and Nowotny (2009).

5.6. Role of octopamine

Unanswered by these experiments is whether generalized
stimulation by octopamine is required in ML systems such as
MothNet, distinct from actual biological systems. In the moth, oc-
topamine stimulation may offer a work-around to avoid biological
constraints on Hebbian growth rates and input intensity. That is,
octopamine may act primarily as an accelerant. However, engi-
neered NNs can easily crank up growth rates, enforce higher MB
activity, and amplify signals during training, all without recourse
to the octopamine mechanism but perhaps with the same benefi-
cial effect on learning. In this case, generalized stimulation would
not be a necessary part of the biological toolkit described here
for application to ML tasks. However, it may be that octopamine
stimulation also enables exploration of the coding solution space
not normally activated by stimuli. Alternate ways to replace this
functionality in the ML context are not so obvious.

5.7. Role of noise

Also unclear is the role during learning, if any, of the high
intrinsic noise built into MothNet’s Antennal Lobe. In a biologi-
cal context neural noise (including in the AL) can have diverse
benefits independent of learning (Delahunt, Maia, & Kutz, 2018;
Knight, 1972; Ma, Beck, Latham, & Pouget, 2006; Wiesenfeld &
Moss, 1995). However, our experiments found no positive reason
to build high intrinsic noise into the AL (or any NN layer) in an
ML context. However, a noisy pre-amp (e.g. the AL) might still be
directly beneficial to learning, for three reasons.

First, when coupled with sniffing, a noisy AL might provide a
version of data augmentation (as used in DNNs) by distorting the
codes delivered to the MB and readout neurons. This would im-
prove one-shot or few-shot learning, if the distortions induced by
the noisy AL somewhat mimicked the within-class sample varia-
tion (this condition was likely absent in our MNIST experiments).
Second, injecting noise into input layers, or corrupting training
samples, can improve NN classification performance (An, 1996),
suggesting a concrete benefit during training (though perhaps
not during classification). Third, injecting noise may be a useful
or even necessary way to explore the solution space (Bengio &
Fischer, 2015).

5.8. Expanding the biological toolkit

The algorithmic tools for learning characterized here derive
from one of the simplest biological learning networks (a bug
brain). It is still unclear whether modifications to this network
can substantially improve performance, or whether this particular
architecture can achieve just so much in terms of accuracy and
scope of work, commensurate with the constrained needs and
pressures experienced by insects as they evolved. Happily, BNNs
are incredibly diverse and complex. Countless other useful ele-
ments can likely be abstracted from other biological systems and
applied to ML tasks. This requires accurately modeling these more
complex systems and analyzing how they learn, an open-ended
task.
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