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Abstract—Post-harvest losses to grain crops are conservatively
estimated at 10-20% (ranging up to 40%) in many countries.
In particular, grains must be properly dried to avoid spoilage,
harmful mycotoxins from mold, and financial loss. Smallholder
farmers can thus greatly benefit from a means to assess Moisture
Content (MC) in their grain. We describe a two-step algorithm,
with very low computational cost, that calculates MC with high
accuracy, using Relative Humidity (RH) and Temperature (T)
time-series. The time-series do not need to reach equilibrium
state, enabling fast (12-minute) time-to-result. The algorithm first
curve-fits the RH time-series to estimate asymptotic RH, in order
to leverage the physics of the RH-T-MC equilibrium relationship.
It then uses regression to estimate MC to within ±1% on ≥95%
of samples over a wide range of ambient RH-T conditions, on
both Lab and Field samples of 10 different grains.

Index Terms—grain drying, moisture content, relative humid-
ity, machine learning, Chung-Pfost

I. INTRODUCTION

A. Use-case

Post-harvest losses to grain crops are conservatively esti-
mated at 10-20% (ranging up to 40%) in Sub-Saharan Africa
[1]. Inadequate drying and storage practices are a significant
problem, since high temperature and humidity are often factors
at time of grain harvest. Smallholder farmers have qualitative
methods for determining moisture content (such as biting),
but these methods are subjective and harm the farmer when
negotiating the sale of their grains: If the grain is too wet,
the buyer will either reject the grain or charge a penalty; if
it is too dry, the farmer loses income on sales by weight. In
stored grain, insufficient drying can lead to fungal growth that
reduces nutritional value, produces harmful mycotoxins, and
reduces economic value of the grain [1]–[3].

B. Abbreviations

Moisture Content (%): MC
Temperature (°C): T
Relative Humidity (% or fraction): RH
Estimate of equilibrium RH (asymptotic RH): R̂H
Neural Network: NN

C. Predicting MC using RH and T

Devices that measure MC of grain using capacitance or
infra-red spectra are too expensive for this use-case [4]. A
lower-cost approach is to estimate grain MC indirectly by

measuring the RH of a closed volume of air which has
come into equilibrium with a sample of grain. Of RH-
measuring devices, some are low cost but non-quantitative,
instead giving a “go-no go” reading (e.g. [5], [6]); another
device is promising, but still does not meet accuracy and cost
specs for our use case [7].

Our lab researched market needs and developed a device
to deliver: (i) quantitative estimates of grain MC; (ii) high
accuracy; (iii) fast time-to-result; (iv) long device life; and (v)
low cost (bill of materials ≈9 USD, all-in cost to farmer ≈20
USD), which tightly constrains computational power.

This paper focuses solely on the algorithms to predict MC
using device output; description of the device itself is beyond
our scope. The performance specs relevant to the algorithms
are detailed in section II-B. The device outputs RH and T
time-series, which however do not reach equilibrium state
within the time-to-result allowed. The algorithms seek to
accurately estimate grain MC using these time-series.

Approaches to estimation of MC using RH and T , in
equilibrium state, include (1) physics-based equations, and
(2) machine learning (ML) methods.

1) Physics-based equations: There are several equations of
the form MC = f(RH,T ) linking equilibrium-state variables
MC, RH , and T , with parameters depending on grain type
and RH-T range. These equations seek to model some aspect
of the physics of the system, and are often further modified to
better fit empirical isotherm data. Examples of such equations
include those of Chung-Pfost, Henderson, Oswin, and GAB
[8]. Given proper conditions and knowledge of the key grain-
and condition-dependent parameters, these equations can be
in principle used to predict MC, via calculation or look-up
tables [9], [10].

However, several factors impede direct application of these
equations: They require equilibrium RH and T readings;
equation fitting parameters for actual grains or grain subtypes
can differ significantly from those listed in the standards [11];
and the optimal equation to use varies by grain [11]. Also,
the equations and look-up tables give insufficient accuracy
for our use-case performance specs [7], [11], [12].

2) ML regression methods: We can bypass modeling the
physics (in a sense) by applying ML regression methods.



Given a dataset of samples with features X and target variable
y, {Xi, yi}, we parametrize (train) a model on a training set,
then apply the trained model to other samples. Model quality
is judged by its predictive accuracy on test sets relative to a
ground truth MC as determined by a high accuracy bench
device (the GAC 2500, Dickey-John Corp, precision ±0.1%).

Examples of models include: (i) The simple but powerful
Linear Model, which assumes a relationship yi =

∑
j βjxj+ε,

where ε is a noise term; (ii) Neural nets (NNs), which are
universal function approximators and effective all-purpose
prediction models. They have been used to predict MC of
grains [13], [14] and (on synthetic data) [15].

D. Scope of this paper

This paper describes ML algorithms to predict grain mois-
ture, using time-series of RH and T as features. The time-
series data reflect behavior of RH and T in a small airspace
above the grain sample, after the device is closed and as
the grain-air system moves towards equilibrium. Crucially, the
system does not need to reach equilibrium before making an
accurate MC estimate.

Contributions of this paper include: (i) Performance
requirements for a grain MC predictor to be useful in the
field; (ii) an accurate, low-cost algorithm for MC prediction
that uses RH and T time-series far from equilibrium state;
and (iii) some bright ideas that did not work.

II. METHODS

A. Datasets

Experiments addressed 10 crops (maize, coffee, beans,
ground nuts (e.g. peanuts), sorghum, rice, cowpeas, soybean,
sesame, and millet) across the full range of environmental
conditions in the target market.

Data consisted of ground-truth MC (as determined by
the GAC 2500) plus time-series of RH and T for grain
samples. Time-series were 60 minutes long, but since
allowable time-to-decision for test samples was 17 minutes
after device closure, the models (with one exception, see
section II-F) used only the first 17 minutes (later reduced
to 12 minutes). Two sets of data were collected: Lab and Field.

1) Lab-generated data: Lab data was collected under a
range of RH-T conditions, for 6 crops: Cowpeas (n = 335),
millet (n = 274), rice (n = 334), sesame (n = 234), sorghum
(n = 335), and soy (n = 335). Dry grains were rewetted
to a range of MCs, then processed in the device inside a
controlled climate chamber set to the desired RH-T . Ambient
RH-T combinations covered all expected (year-round) field
conditions, and in fact covered more conditions than we
encountered in the field.

2) Field-generated data: Field data was collected at
several locations in Uganda, for grains with various moisture
contents, at various ambient RH-T conditions, for five crops
(driven by availability of recent harvests): Bean (n = 941),

coffee (n = 105), maize (n = 352), nut (n = 428), and
sorghum (n = 339). Beans were of 4 types of different sizes,
including Mung beans which were differed considerably
in size from the others. Data was also collected for small
numbers (n < 50) of cowpeas, millet, rice, sesame, and
soybean. RH-T combinations were limited by weather
conditions, so they did not cover as wide a range of RH-T
conditions as did the lab-generated data.

Fig. 1 shows a typical distribution of RH-T conditions for
Lab and Field data, showing overlap in a central region of
RH-T conditions and the lack of Field data in two corner
regions.

Fig. 1. Distribution of ambient RH-T conditions of collected samples
(Maize). x-axis: Temperature, y-axis = RH (relative humidity). Green: Field
data. Blue: Lab data, overlapping with field (central region). Red: Lab data
for conditions absent in the field data (corner regions).

B. Accuracy and other use-case requirements

Accuracy specs were driven by the need for the farmer to
have highly accurate estimates of MC near the optimal drying
target, for selling into the formal market: Drying must not
stop too early, to avoid rot and mycotoxins, as well as price
penalties. Drying should stop as soon as possible once below
the optimal target, to maintain maximum selling weight.

Each grain had a target MC [2], shown in Table I. For MCs
close to this target (the “critical” region), acceptable error was
under ±1% raw MC (compare specs in [16]). For MCs far
above or below the target MC (the “non-critical” region),
acceptable error was larger. Fig. 2 illustrates the acceptable
error bands. The key Figure of Merit was % accuracy, i.e. the
percent of samples that had error within acceptable bounds.
The algorithm was expected to have within-bounds error on
95% of samples in a test set. Note that this goal can be easier
or harder depending on the distribution of MCs in the test
set, because samples with MC in the critical region are more
challenging due to the tighter error specs.

Time-to-result requirement was ≤17 minutes from lid clo-
sure (12 minutes sufficed as it turned out).



TABLE I
Target moisture content (%) by grain.

Coffee 11 Bean 14
Nuts 7.5 Maize 13.5

Cowpeas 12 Millet 14
Sesame 6 Rice 14

Sorghum 13.5 Soy 14

Fig. 2. Definitions of acceptable error bands. Black dot shows the target
MC, m̂c. Magenta lines show acceptable error at each true MC. x-axis is
true MC, y-axis is predicted MC. For true MCs between m̂c - 2% and m̂c
+ 3.5%, raw predicted error should be under 1% (critical region). For true
MCs outside this range, the acceptable error increases (non-critical region).

Processing hardware was tightly constrained by cost (8 bit,
2 kB RAM, 32 kB flash program memory).

C. Algorithm overview

We implicitly assume that MC ≈ f(RH,T ), with RH the
most important input variable. RH also had the most variable
time-series (the most dramatic changes after device closure) in
our device. Because time-to-result constraints prevent access
to equilibrium state RH , we need to estimate an asymptotic
value R̂H .

The approach is as follows:
1) A quadratic ax2 +bx+c is fitted to the RH timecourse,

starting at 5 to 10 minutes post-lid-closure and ending
17 (or 12) minutes post-lid-closure.

2) The peak (trough) of the fitted quadratic serves as an
estimate of R̂H .

3) A regression model predicts MC using 5 features:
a, b, c, R̂H , and ∆T . The model can be linear, or a
simple NN (e.g. 2 hidden layers with 3 units each).

4) For training, only samples with MC in the critical
region close to the target MC (see Fig. 2) are used to
train the algorithm.

A key driver of our algorithm design was the low computing
power available. Thus we did not try feeding the time-series
into a large NN (see section IV). Code was developed in
Python, including the scikit-learn library [17], [18].

In the following sections, we describe in detail the curve-
fitting step, the regression step, and some ideas that did not
pan out.

D. (Step 1) Curve fitting

In general, RH time-series exhibited a short transient fol-
lowed by a roughly exponential increase or decrease (depend-
ing on the initial ambient RH-T conditions and the grain
MC) towards an equilibrium state (for example RH curves
see Fig. 3). Equilibrium usually took much longer to reach
than 17 minutes, so a challenge was to estimate the equilibrium
RH , R̂H , given a partial trajectory. Equilibrium was usually
reached before 60 minutes, so we had a reasonable direct
proxy for R̂H in our training data. But this was unavailable
in test samples.

Although the RH curves appeared roughly exponential,
fitting an exponential gave poor results (the fitting often did
not converge, and its asymptotic value underestimated R̂H).
We found that fitting a quadratic curve q(t) was very robust
and enabled more accurate estimates of R̂H , which was taken
to be the value at the zero derivative: R̂H = q(t) | dq

dt = 0.
We used a 5 second time-step, and a Levenberg-Marquardt

algorithm for fitting. Tests with a version in C showed this
stayed within our chip’s resources.

Some samples displayed longer transients after lid closure,
so a 5 (or even 10) minute delay before curve-fitting greatly
improved R̂H estimates. Thus we ignored the first third of
our data, and fitted RH between t = 5 minutes and t = 17 (or
12) minutes. Fig. 3 shows the improved R̂H estimates due to
this delay.

Because R̂H was a more important regression variable than
T , and because T time-series were generally less active, fitting
a curve to T time-series did not yield benefit.

E. (Step 2) Regression

The fitted quadratic parameters {a, b, c} and the estimate
R̂H gave four features for regression. For a fifth T-based
feature, we found that the variable ∆T = Tend − Tstart was
a superior proxy for T .

We trained a different model for each grain, consistent with
physics equation parameters being different for each grain.
Linear models and simple 2 layer NNs (e.g. 3 units per layer)
were roughly equivalent, one or the other performing slightly
better on different grains. The small size of the NNs allowed
the constrained hardware to run them on test samples.

Based on linear model β coefficients (standardized features),
the most important features were R̂H and quadratic parame-
ters a, b, while ∆T had almost no effect (compare the GAB
equation, which has no T dependence).

We note that an automated grid search did not discover an
optimal NN architecture. We suspect this is because we chose



Fig. 3. Effect delaying the start of the RH time window. Two coffee samples
(top and bottom). Left: No delay. Right: 5 minute delay. Blue = raw time-
series, green = fitted window, red = fitted quadratic, thick magenta bar =
estimate of R̂H at the zero derivative of the quadratic. The delay gives a
much more accurate estimate of R̂H in many cases.

an unsuitable figure-of-merit to rank architectures during the
search.

We found it advantageous to impose a constraint on the
training data, which reflected our use-case’s particular accu-
racy requirements (cf section II-B). Higher prediction accuracy
was required for MCs close to the target MC, and these
samples were thus most important for the model to fit closely.
We therefore removed from training all samples with MC
outside the critical region, so that the model saw only critical
region samples during training. This improved test set results,
because the critical samples were more accurately predicted,
while non-critical samples, though ignored by training, were
still predicted within spec, sometimes because of their looser
error allowance.

An aside: Grain MC exhibits hysteresis, i.e. different rates
of absorption and desorption [11], [19], [20]. Thus, different
linear models might be indicated for cases where RH is
increasing vs. decreasing, assuming sufficient cases of each
type. We did not explore this avenue.

F. Ideas that did not work

Three promising methods failed to yield benefit. We
describe them briefly here, and follow up in the Discussion.

1) Physics-based equations: As noted earlier, various equa-
tions potentially offer straight-forward prediction of MC using
R̂H and T as inputs.

The equations require fitted parameters (generally denoted
A,B,C) specific to each grain type and Temperature regime,
which based on the literature would not be sufficiently accu-
rate. However, the equations can be manipulated to give func-
tions of the form MC = f(g1(RH,T ), g2(RH,T ), ...) where

f(...) has somewhat simple form, by extracting intermediate
functions g(RH,T ). Examples include:
(i) Oswin’s equation (using [9], where parameter C = 2)

RH =

[(
a+ bT

MC

)2

+ 1

]−1
(1)

can be rearranged to give a linear function

MC = az + b(Tz), where z =
1√
1

RH − 1
(2)

(ii) The GAB equation does not include T , and can be written
as a linear function 1

MC = β0 + β1RH + β2
1

RH .

(iii) If T is assumed fixed (motivated by the minor importance
of T in the regression models), Chung-Pfost can be rewritten
as a linear function of z = ln(ln(RH)).

However, using these intermediate variables as features
yielded poor results, for both linear and NN models.

2) Two-stage regression for improved R̂H: Although we
were restricted to a 17 minute time-series in test samples,
we had 60 minute time-series for training data, and RH(60)
was much closer to (or at) equilibrium state. We thus tried
a two-stage regression, where we used one model to predict
RH(60) based on features derived from the 17 minute
time-series, and a second model (as described above) to
predict MC using the predicted RH(60) value as the new
R̂H feature. This method yielded much more accurate
estimates of R̂H , as shown in Fig. 4. However, the improved
R̂H feature did not improve test set accuracy.

Fig. 4. Effect of regressing from 17-minute features to RH(60). A: RH(60)
vs 17-minute R̂H . B: RH(60) vs prediction from the 17-minute features.
The 17-minute features very reliably estimate RH(60).

3) Dewpoint conversions: Psychrometric charts [20], [21]
enable an {RH,T} pair to be mapped via dewpoint conver-
sions to a different {RH ′, T0} pair, where RH ′ is uniquely
determined by T0. This raised the possibility of transforming
RH time-series such that all T values were normalized to
some T0. This would be useful, for example, in linearizing
the Chung-Pfost equation above. However, the wide range
ambient {RH,T} conditions led to similarly wide ranges



of {RH,T} values in time-series. Due to the constraints of
dewpoint conversion by psychrometric chart, we could not
normalize all pairs to a single T0. Further, even among subsets
of data that could be normalized to a single T0, final MC
prediction accuracy was impaired.

III. RESULTS

We report on four experiments that tested generalization of
models: (1) Within dataset (Lab→Lab or Field→Field); (2)
to new datasets (Lab→Field, Field→Lab); (3) to new RH-T
conditions (Central→Corner); and (4) to the special case of
unequal starting temperatures for device and grain.

To calculate accuracy for within-dataset experiments, we
divided the data into 10 random folds. Each fold was excluded
from training and treated as a test set in turn, and the 10 test
set results were afterwards parsed into critical and non-critical
MCs and combined to give accuracy statistics (10-fold cross-
validation). For all other experiments, the training and test
sets were naturally separate, and accuracy was reported for
the test set. We reported separate accuracies for critical and
non-critical region samples (critical region accuracy is most
important functionally).

Experiments were run on each grain separately. For each
grain, samples were curve-fitted, then either a linear or NN
({3,3} architecture) model was trained with 5 features. Be-
cause the two model types gave largely equivalent results, we
did not report which was used in each case.

A. Within dataset accuracy (Experiment 1)

This experiment assessed the cross-validated accuracy over
datasets of samples with the same collection method (i.e. Lab-
only or Field-only).

For all grains except Soy, prediction accuracy matched or
exceeded performance specs. Soy, Beans, and Coffee were
borderline, depending on how accuracy is calculated (e.g. on
just critical region, on all samples, or on a fixed blend of
critical and non-critical samples). For all grains, accuracy on
samples in the non-critical region was close to perfect. Table
II shows percent accuracy by grain for samples with MC
inside the critical region, and outside (non-critical). Fig. 5
show scatterplots of estimated vs true MC by grain for Rice
(top) and Beans (bottom).

B. Generalization Lab→Field (Experiment 2)

This experiment assessed whether a model trained on one
type of data (e.g. Lab-generated) could generalize well to a
different type (e.g. field generated). Only three grains (Maize,
Nuts, and Sorghum) had large field sets and thus allow solid
conclusions about generalization, and also allow Field→Lab
generalization experiments (coffee had no Lab data). Results
for other grains have limited strength due to small numbers of
Field samples. Generalization from Lab to Field was varied
but overall poor: Accuracy dropped between 0% and 20%.

Generalization in the Field→Lab direction was poor also.
Note that the Field→Lab direction includes two kinds of
generalization: Field→Lab, and Central→Corner region (cf

Fig. 5. Scatterplots of predicted MC vs true MC for Rice (top) and Beans
(bottom). Yellow squares: critical region samples within spec (red squares:
outside spec). Green circles: non-critical samples within spec (red circles:
outside spec). Rice (top) shows an unusually strong bleed of non-critical
samples into the looser error bounds. Beans (bottom) had one of the widest
spreads, due to diversity of bean types.

Experiment 3 below). Table IV shows generalization accuracy
in both directions, as well as numbers of Field samples. Fig. 6
shows scatterplots for model generalization from Lab→Field
and from Field→Lab.

C. Generalization Central to Corner regions (Experiment 3)

Field data was not available for the full grid of expected
ambient RH-T combinations. A central region of the {RH ,
T} space was well-covered, while corner regions were not (see
Fig. 1). Note that “central-corner” is a split based on ambient



TABLE II
Prediction accuracy by grain for sample MCs in the critical region and in the non-critical region. “Bean” refers to Beans without Mung, which had

considerably different size (accuracy for Beans including Mung in parentheses).

Accuracy (%) Bean Coffee Cowpeas Maize Millet Nuts Rice Sesame Sorghum Soy
Critical 93 (90) 94 96 97 99 96 95 97 99 91

Non-critical 99 100 100 100 100 100 100 100 100 100

TABLE III
Accuracy using a window ending at 12 minutes. “Bean” refers to Beans without Mung (accuracy for Beans including Mung in parentheses). Accuracy is

almost identical to the 17 minute case.

Accuracy (%) Bean Coffee Cowpeas Maize Millet Nuts Rice Sesame Sorghum Soy
Critical 92 (89) 91 96 97 99 95 95 96 99 90

Non-critical 99 100 100 100 100 100 100 100 100 100

TABLE IV
Generalization accuracy, when trained on one type of data (Lab or Field) and tested on the other type. “Lab Critical” values are the same as in Table II.

Only three grains (Maize, Nuts, and Sorghum) had sufficient data in both Lab and Field to draw solid conclusions, shown in bold font.

Accuracy (%) Cowpeas Maize Millet Nuts Rice Sesame Sorghum Soy
Lab Critical 96 97 99 96 95 97 99 91

Lab as Training 97 99 99 99 97 97 99 94
Field as Holdout 76 82 100 84 98 100 92 89
Field as Training - 98 - 96 - - 98 -
Lab as Holdout - 89 - 73 - - 80 -
# Field samples 33 352 27 428 43 21 100 18

RH-T conditions, distinct from the “critical-noncritical” split
based on MC. We wished to know whether a model trained
on the existing Field data (containing central region samples
only) might effectively handle future corner samples in the
field. This experiment assessed whether a model trained on
central region samples generalized to corner region samples.

The Lab data was divided into central and corner regions
as shown in Fig. 1. An algorithm was trained on samples
from the central region only and tested on samples from
the corner region. Accuracy on samples from the central
region was assessed (by 10-fold cross-validation) as a control.
Generalization was good. A model trained only on central
RH-T region samples had little degradation in accuracy on
corner region samples (0% to 6%). Table V shows percentage
accuracy by grain on central and on corner regions, for an
algorithm trained on central region samples.

D. Unequal device and grain temperatures (Experiment 4)

During field data collection, we observed that device and
grain might sometimes start at different temperatures (in
particular, if the grain was in the sun and the device was in
the shade prior to loading). This was therefore a potentially
important operating condition to add to the performance specs.

Small datasets simulating this unequal temperature case
were generated in the Lab for Maize (n = 25) and Nuts
(n = 21). This experiment assessed whether models trained
on samples with equal device-grain temperatures could ac-
curately predict MC of samples with unequal device-grain

temperatures. We trained models to predict true MC on Lab
samples with equal device-grain temperatures, then applied
these models to the Lab samples with unequal temperatures
(∆ = 5 or 10 °C).

The models did not generalize well on these small test
sets. Test set accuracy for Nuts was 76%, for Maize 64%
(with another 13% very close to the acceptable boundary), vs
training set accuracies of 98% (10-fold cross-validation). Gen-
eralization was slightly better for samples with a temperature
∆ = 5 °C than for those with ∆ = 10 °C. Table VI gives the
accuracy results.

IV. DISCUSSION

We presented details of a two-step algorithm for predicting
MC of grains. The algorithm acted on time-series for RH
and T that had not reached the equilibrium state normally
required for MC prediction, and had low computational cost.
The algorithm matched or exceeded demanding performance
specs (MC error ≤1% raw, on 95% of samples), given test
samples from the same general distribution (i.e. Lab-generated
or Field-generated). However, performance did not generalize
well to samples from different distributions (e.g. Lab→Field).

A. Two-step algorithm
Our algorithm had two main steps: First, it fitted a quadratic

to the RH time-series, a low-cost and effective way to estimate
asymptotic RH , R̂H , based on the system response from time
t = 5 minutes to t = 17 (or 12) minutes, as it moved towards
but was still far from an equilibrium state.



TABLE V
Percentage accuracy on corner region samples, of algorithms trained on the central regions. Generalization to corner regions was good for most grains.

Cowpeas Millet Rice Sesame Sorghum Soy
Central sample size 115 106 113 78 112 115
Corner sample size 224 168 226 159 227 221

Central accuracy (%) 97 98 97 100 96 90
Corner accuracy (%) 92 95 92 97 97 84

Fig. 6. Scatterplots of estimated vs true MC for Maize. x-axis = true MC.
y-axis = predicted MC. Top: Field data predicted using models trained on
Lab data. Bottom: Lab data predicted using model trained on Field data.
Yellow squares are training set predictions (10-fold CV). Green circles are
test samples within spec; red circles are test samples outside spec.

TABLE VI
Accuracies (as percentages) on training set (10-fold CV) and holdout set

(i.e. samples with unequal grain-device temperatures) for Maize and Nuts.
For Maize, an additional 13% of holdout samples were very close to the

acceptable boundary. Numbers in parentheses are results parsed by samples
with ∆ = 5 vs ∆ = 10. Generalization was better on samples with ∆ = 5.

Accuracy (%) Maize Nuts
On training (CV) 99 98

On holdout 64 (67, 62) 76 (80, 73)
# holdout samples 25 (12, 13) 21 (10, 11)

Second, regression used this R̂H , as well as T and the
quadratic fit parameters, as input features to simple models
(linear or small NN). Because R̂H is of central importance to
the target variable MC, isolating it for use as a feature enabled
a simple regression model to make accurate predictions. That
is, it successfully leveraged physics-based priors.

B. Generalization from Lab→Field

From a practical point of view, the relevant direction
for model generalization in Experiment 2 (section III-B) is
Lab→Field, since it may be easier to generate Lab data but
the device is deployed only in the Field. Degraded test set
accuracy is typical when train and test samples are not drawn
from the same distribution. The results suggest that the lab
set-up did not reproduce field conditions closely enough to
generate a stand-alone training set (i.e needing no field data),
given the models used and the field performance spec of
95% accuracy. For example, exact species differed (lab-grown
in U.S. vs field-grown in Uganda), and Lab samples were
rewetted, which may have affected their behavior [11], [22].

We lacked Field data from corner regions of the {RH , T}
space of ambient conditions (the conditions were never en-
countered). Experiment 3 (section III-C) showed good general-
ization from central to corner region samples on Lab samples.
But a small drop in accuracy might have outsized impact in
terms of hitting the 95% accuracy spec on Field sample sets
drawn purely from corner RH-T regions. Note that results
of Experiment 2 (section III-B suggest that including Lab-
generated samples with corner region conditions might not
fully substitute for Field data from corner regions.

C. Ideas that did not work

Somewhat surprising was the failure of direct physics-
based methods. We had expected these to improve regression



performance by constraining, in realistic ways, the solution
space to be searched by the optimizer.

Sole use of physics-based equations, of form MC =
f(RH,T ), gave much worse results than a regression model
using RH , T, and curve parameter features. We hypothesize
that these equations depend on conditions crucially distinct
than those we had. That is, our data (especially from the Field)
was better modeled by MC = f(RH,T ) + ε(RH,T ), where
ε(RH,T ) represents noise not captured by the physics-based
function f(RH,T ), but still sufficiently dependent on RH
and T to allow a regressor (such as a function-approximating
NN) to accurately encode it. The loss in generalization from
Lab→Field data (and vice versa) suggests that the ε(RH,T )
terms were different for Lab and Field datasets.

Dewpoint conversions, as a means of normalizing tempera-
tures T to some T0, offered the promise of focusing predictive
algorithms on RH as a feature. The wide range of RH-T
conditions precluded use of a single T0. However, even within
subsets of the data that allowed normalization to a single T0
the conversion was not helpful, for reasons still unclear to us.

Leveraging our readings of RH at 60 minutes (during
training) to better predict R̂H via an intermediate regressor
gave no additional benefit. This was perhaps because the
regression model implicitly did this step anyway, or because of
the already high intra-data type accuracies (cf section III-A).

Given the (justifiable) popularity of deep NN methods, we
might have tried to input the raw time-series into a deep
NN, with convolutions or recurrent connections to accommo-
date the time dependencies. However, this strategy had three
drawbacks: (i) The memory to store such a model, and the
computation required to apply it to a sample in the field, would
far exceed our hardware and battery life constraints; (ii) deep
NNs typically require large amounts of training data, which
in this case is expensive to collect, especially in the field; and
(iii) such a model would not fully leverage the physical fact
that grain MC is closely related to equilibrium RH and T .

D. Unequal temperature use-case

The possibility that grain and device might start at different
temperatures, e.g. grain laying in the sun being loaded into a
device that had been stored in the shade, was observed while
collecting field data. We do not know how vital this use-case
is, and whether it might be negotiated out of the product
specifications. One might perhaps argue that this situation
could be excluded in the instruction manual; but effective
deployments must accept certain realities of field use. One
of the benefits of field work is exposure to such unforeseen
but vital usage details, and we are currently evaluating how to
proceed in light of this new use-case.

The number of samples in this experiment was small (∼25
per grain) making the result noisy. However, poor general-
ization from equal-temperature training samples to unequal-
temperature test samples may have been due to (i) the method
by which in-lab data was generated, or (ii) intrinsic limitations
of our algorithmic approach:

(i) This batch of data was generated at a later date than the
rest (since it was a response to field work observations), and
some changes in processing method might have occurred.

(ii) MC is a function of grain moisture diffusion, which is
strongly dependent on T and RH . In the equal-temperature
case, T has minimal change over the 17 minute timecourse,
while unequal-temperature cases can show high fluctuations in
T . Given this difference, poor generalization is not surprising.
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