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The insect olfactory system, which includes the antennal lobe (AL), mushroom body

(MB), and ancillary structures, is a relatively simple neural system capable of learning. Its

structural features, which are widespread in biological neural systems, process olfactory

stimuli through a cascade of networks where large dimension shifts occur from stage

to stage and where sparsity and randomness play a critical role in coding. Learning is

partly enabled by a neuromodulatory reward mechanism of octopamine stimulation of

the AL, whose increased activity induces synaptic weight updates in the MB through

Hebbian plasticity. Enforced sparsity in the MB focuses Hebbian growth on neurons that

are the most important for the representation of the learned odor. Based upon current

biophysical knowledge, we have constructed an end-to-end computational firing-rate

model of the Manduca sexta moth olfactory system which includes the interaction of

the AL and MB under octopamine stimulation. Our model is able to robustly learn new

odors, and neural firing rates in our simulations match the statistical features of in vivo

firing rate data. From a biological perspective, the model provides a valuable tool for

examining the role of neuromodulators, like octopamine, in learning, and gives insight into

critical interactions between sparsity, Hebbian growth, and stimulation during learning.

Our simulations also inform predictions about structural details of the olfactory system

that are not currently well-characterized. From amachine learning perspective, the model

yields bio-inspired mechanisms that are potentially useful in constructing neural nets

for rapid learning from very few samples. These mechanisms include high-noise layers,

sparse layers as noise filters, and a biologically-plausible optimization method to train the

network based on octopamine stimulation, sparse layers, and Hebbian growth.
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1. INTRODUCTION

Learning is a vital function of biological neural networks, yet the underlying mechanisms
responsible for robust and rapid learning are not well understood. The insect olfactory
network, and the moth’s olfactory network (MON) in particular (e.g., in the Manduca
sexta moth), is a comparatively simple biological neural network capable of learning
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(Daly et al., 2001; Riffell et al., 2008), and makes an ideal
model organism for characterizing the mechanics of learning.
It is amenable to interrogation through experimental neural
recordings of key, well-understood structural components
including the antennal lobe (AL) (Wilson, 2008) and mushroom
body (MB) (Campbell and Turner, 2010). In addition, the AL-
MB contain many structural motifs that are widespread in
biological neural systems. These motifs include: (i) the use
of neuromodulators (octopamine and dopamine) in learning
(Dacks et al., 2012), (ii) a cascading networks structure (Masse
et al., 2009), (iii) large changes in dimensionality (i.e., numbers
of neurons) between networks (Laurent, 2002), (iv) sparse
encodings of data in high-dimensional networks (Honegger et al.,
2011), (v) random connections (Caron, 2013), and (vi) the
presence of noisy signals (Galizia, 2014). Bio-inspired design
principles suggest that each of the features has high value to
the olfactory system. The mechanism of octopamine/dopamine
release during learning is of particular interest, since it is not well-
understood how this stimulation promotes the construction of
new sparse codes in the MB.

In this work, we build a computational model of the moth
olfactory network, including both AL and MB, that is closely
aligned with both the known biophysics of the moth AL-MB and
in vivo neural firing rate data, and that includes the dynamics of
octopamine stimulation. We then run simulations to investigate
how the system components interact to learn new odors. When
building our Network Model we have consulted the literature,
subject to a caveat: Moths and flies are similar enough that
findings in flies (Drosophila) can generally be transferred to
the moth; but locusts and honeybees are more complex, and
some findings in these insects do not safely transfer, while other
findings are general enough to readily apply (Riffell et al., 2009a).

There exist several computational models based on the insect
brain (García-Sanchez and Huerta, 2003; Nowotny et al., 2005;
Jortner et al., 2007; Huerta and Nowotny, 2009; Nowotny, 2009;
Arena et al., 2013; Bazhenov et al., 2013; Mosqueiro and Huerta,
2014; Faghihi et al., 2017; Peng and Chittka, 2017; Roper et al.,
2017). Because the MB is central to memory, these models
focus on the sparsely-firing, high-dimensional MB plus readout
neuron(s), leaving aside the AL or treating it as a “pass-through.”
Some of these models incorporate forms of Hebbian plasticity
(Nowotny et al., 2005; Huerta and Nowotny, 2009; Nowotny,
2009; Bazhenov et al., 2013; Peng and Chittka, 2017). In general
these models are not closely tied to a particular organism (though
they are usually inspired by locusts or honeybees), so they are
“top-down” designs, allowing freedom with model parameters
in the service of capturing general behaviors (indeed, Peng and
Chittka, 2017 points out the advantages of this more general
approach).

Key findings of these models include: The value (for
class separation) of the fan-out into the high-dimensional,
sparsely-firing MB; theoretical calculations of parameters such
as optimal AL→MB connectivity (García-Sanchez and Huerta,
2003; Nowotny, 2009); the value of random neural connectivity
(Nowotny, 2009; Peng and Chittka, 2017); the ability of the
simple MB structure to capture complex behaviors (Bazhenov
et al., 2013; Peng and Chittka, 2017; Roper et al., 2017); robust

performance over wide tuning parameter ranges (Huerta and
Nowotny, 2009; Roper et al., 2017); and the generalized learning
skills of the insect MB, given a Hebbian update mechanism
(Huerta and Nowotny, 2009; Arena et al., 2013; Mosqueiro and
Huerta, 2014; Faghihi et al., 2017; Peng and Chittka, 2017).

Our computational model of learning in the MON is distinct
in four key ways from these general, MB-focused studies.
(i) We model the architecture and neural dynamics of the
whole system. This includes detailed internal wiring of the
AL, the MB, inhibition from the Lateral Horn, octopamine
stimulation during learning, Hebbian plasticity, and an extrinsic
(readout) neuron downstream. Linking careful models of the
AL and MB fills a particular gap in the literature called out
by Mosqueiro and Huerta (2014). (ii) We include octopamine
stimulation in the dynamics equations. The neuromodulator
octopamine (similarly dopamine) is essential to learning in the
insect olfactory network (Hammer and Menzel, 1995, 1998),
but it has not (to our knowledge) been incorporated into a
computational model. Thanks to a unique dataset we are able
to model this key component, and trace its effects on the AL,
the MB, and learning. (iii) We tether our model architecture
to a particular insect system (the M. sexta moth). As part
of this tethering, (iv) we calibrate the model’s AL firing rate
behavior to a dataset of in vivo neural recordings of moths during
learning, i.e., while exposed to both odors and octopamine.
Thus our model is built “bottom-up,” with parameters as far
as possible determined by a particular organism. For example,
we set AL→MB connectivity and weights based on clues in
biophysical studies and calibration to in vivo firing rates, rather
than using the model to explore theoretically optimal values. This
is an opposite, and complementary, approach to the studies cited
above, and in combination with our unique in vivo octopamine
data yields in several new findings, as well as some findings that
reinforce those of previous studies but from a different angle.

We thus create a full, end-to-end neural network model
(hereafter “Network Model”) that demonstrates robust learning
behavior while also tightly matching the structure and behavior
of a particular biological system. This approach has three
advantages: (i) we can meaningfully compare Network Model
simulation output to experimental data in order to tune model
parameters; (ii) findings from our simulation results can map
back to the original biological system to offer meaningful
biophysical insights; and (iii) Network Model simulations allow
us to study how the various key elements in the moth’s toolkit
(e.g., AL, MB, octopamine, and Hebbian updates) interact to
enable learning. We can thus derive bio-inspired insight into
the mathematical framework that enables rapid and robust
learning in neural nets. Specifically, our experiments elucidate
mechanisms for fast learning from noisy data that rely on
cascaded networks, sparsity, and Hebbian plasticity.

These mechanisms have potential applications to engineered
neural nets (NNs). NNs have emerged as a dominant
mathematical paradigm for characterizing neural processing and
learning, honoring their inspiration in the Nobel prize winning
work of Hubel and Wiesel on the primary visual cortex of cats
(Hubel and Wiesel, 1962). These seminal experiments showed
that networks of neurons were organized in hierarchical layers of
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cells for processing visual stimulus. The first mathematical model
of a neural network, the Neocognitron in 1980 (Fukushima,
1980), had many of the characteristic features of today’s deep
neural networks (DNNs). However, many of the biological
motifs listed above (for insect AL-MBs) are largely absent
from engineered NNs, whose principles and building blocks
are biologically implausible even as DNNs have achieved great
success (LeCun, 2015; Schmidhuber, 2015). For example, the
AL-MB interaction with octopamine, Hebbian plasticity, and
sparsity operates in a fundamentally different manner than the
backprop optimization used in DNNs, and it also succeeds at
tasks (e.g., rapid learning) where DNNs struggle. These biological
mechanisms thus represent a potential opportunity to expand
the set of structural and algorithmic tools available for ML tasks.
We seek to characterize an actionable set of biological elements,
a “biological toolkit,” that can be assembled into complementary
NN architectures or inserted into engineered NNs, and that are
capable of rapid and robust learning from very few training
samples, an ability common in biological NNs but challenging
for today’s DNNs.

To briefly summarize the AL-MB network: It is organized
as a feed-forward cascade of five distinct networks, as well as
a reward mechanism (Hildebrand, 1996; Kvello et al., 2009;
Martin et al., 2011). Roughly 30,000 noisy chemical receptor
neurons (RNs) detect odor and send signals to the Antenna
Lobe (AL) (Masse et al., 2009). The AL acts as a pre-amplifier,
providing gain control and sharpening of odor representations
(Bhandawat et al., 2007; Kuebler et al., 2012). It contains roughly
60 isolated units (glomeruli) (Huetteroth and Schachtner, 2005),
each focused on a single odor stimuli feature (Christensen et al.,
1995; Martin et al., 2011). Glomeruli laterally inhibit each other,
and project odor codes to theMushroomBody (MB). AL neurons
are noisy (Lei et al., 2011; Galizia, 2014). The MB contains about
4,000 Kenyon Cells (KCs). These fire sparsely and encode odor
signatures as memories (Campbell and Turner, 2010; Honegger
et al., 2011; Balkenius and Hansson, 2012; Perisse et al., 2013).
MB sparsity is enforced by global inhibition from the Lateral
Horn (Bazhenov and Stopfer, 2010). Extrinsic Neurons (ENs),
numbering ∼10’s, are believed to be “readout neurons” that
interpret the KC codes (Campbell et al., 2013; Hige et al.,
2015). In response to reward (sugar at the proboscis), a large
neuron sprays octopamine globally over the AL and MB, causing
generalized stimulation of neurons (Dacks et al., 2008; Riffell
et al., 2012). Learning does not occur without this octopamine
input (Hammer and Menzel, 1995, 1998). The connections
into the KCs (AL→KCs) and out of the KCs (KCs→ENs) are
plastic during learning (Cassenaer and Laurent, 2007; Masse
et al., 2009). Figure 1 gives a system schematic (A) along
with typical firing rate (FR) timecourses (from simulation) for
neurons in each network (B). More network details are given in
section 4.

2. RESULTS

We first show the calibration of our Network Model to in vivo
data. We then describe neural behaviors of the Network Model

during learning and give results of learning experiments. Finally,
we give results of experiments on MB sparsity.

2.1. Calibration of Model
The Network Model was calibrated to behave in a statistically
similar way to three sets of in vivo data measuring projection
neuron (PN) firing rate (FR) activity in the AL (see section 4 for
details): (i) PN spike counts with odor but without octopamine:
129 units with FR>1 spike/sec, (ii) PN spike counts with odor
andwith octopamine: 180 units with FR>1 spike/sec, and (iii) PN
spike counts with odor, with and without octopamine: 52 units
with FR>1 spike/sec.

Due to the limited number of experimental units, only
qualitative comparisons of the model and experiment could be
made: Excessive tuning of the model parameters would have
served only to overfit the particular data, rather than matching
true PN behavior distributions or, more importantly, the general
learning behavior of the moth. Figure 2 shows the close match
of typical Network Model PN statistics to in vivo PN statistics
based on mean (µ) and variance (σ ) of spontaneous FRs and
odor responses, both without and with octopamine (details of
metrics are given in section 4). Importantly, Figure 2 shows
significant octopamine-modulated increase in PN FR activity
in the Network Model, consistent with in vivo experiments
involving octopamine stimulation.

There is limited experimental data measuring the FR activity
of Kenyon cells (KC) in the MB, and no data to our knowledge
measuring KC in response to octopamine stimulation. However,
we note that the behavior of KCs during the application of
octopamine to the AL, either with or without odor, is not an
artifact of parameter tuning. Rather, it follows from the tuning
the AL to match in vivo data. Specifically, PN FRs at baseline
(with no odor or octopamine), with odor alone, with octopamine
alone, and with odor and octopamine, are all determined by
calibration of the model to in vivo data. KCs respond only to PNs
and to inhibition from the LH (see Figure 1). Calibrating the KC
baseline response in the absence of octopamine to in vivo data
in Turner et al. (2008) fixes the feed-forward connections from
PNs. Assumed in this model, due to lack of biophysical evidence,
is that octopamine has no direct stimulative effect on KC FRs (we
do posit that it acts as an “on switch” for plasticity). Thus KC
behavior with octopamine is fully determined once the model is
tuned to PN data. This completes the calibration process of our
model parameters. As Figure 2 shows, the model agrees well with
in vivo experiment.

There are no bulk data, to our knowledge, measuring EN
firing rates in response to odors and/or octopamine. However,
calibrating EN response is not necessary to demonstrate an ability
to learn. The keymarker is post-training increase in EN response.

2.2. Learning Experiments: PN and KC
Behaviors
PN activity in the AL, and KC activity in the MB, from typical
Network Model simulations are shown in Figure 1 as heatmaps,
evolved over the time course of a simulation in which the system
was exposed to two different odors and trained on one of them.
The AL is stimulated with octopamine during training. Each row
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FIGURE 1 | AL-MB overview. On the left is a system schematic: Chemical sensors (RNs) excite a noisy pre-amp network (AL), which feeds forward to a plastic sparse

memory layer (MB), which excites readout (decision) neurons (ENs). Green lines show excitatory connections, red lines show inhibitory connections (LH inhibition of

the MB is global). Light blue ovals show plastic synaptic connections into and out of the MB. On the right are neuron timecourse outputs from each network (typical

simulation) with time axes aligned vertically. Timecourses are aligned horizontally with their regions-of-origin in the schematic. The AL timecourse shows all responses

within ± 2.5 std dev of mean spontaneous rate as medium blue. Responses outside this envelope are yellow-red (excited) or dark blue (inhibited). MB responses are

shown as binary (active/silent). Timecourse events are as follows: (1) A period of no stimulus. All regions are silent. (2) Two odor stimuli are delivered, 3 stimulations

each. AL, MB, and ENs display odor-specific responses. (3) A period of control octopamine, i.e., without odor or Hebbian training. AL response is varied, MB and EN

are silent. (4) The system is trained (octopamine injected) on the first odor. All regions respond strongly. (5) A period of no stimulus. All regions are silent, as in (1). (6)

The stimuli are re-applied. The AL returns to its pre-trained activity since it is not plastic. In contrast, the MB and EN are now more responsive to the trained odor,

while response to the untrained odor is unchanged. Green dotted line in the EN represents a hypothetical “action” threshold. The moth has learned to respond to the

trained odor.

of the heatmap represents a distinct PN or KC as it evolves in time
(left to right columns of heat map). All the timescales are aligned.
Neural behaviors are as follows:

2.2.1. PNs
In the AL heatmap, the light blue region corresponds to PN FRs
within 2.5 σs of their respective mean spontaneous FRs µs, warm
colors correspond to very high FRs, and dark blues correspond to
strongly inhibited FRs. The simulations demonstrate a number of
key PN behaviors, including (i) absent odor, PN FRs stay within
their noise envelopes (by definition), (ii) the two odors have
distinct excitation/inhibition signatures on PNs, (iii) octopamine
alone (without odor) results in more PNs being excited beyond
their usual noise envelopes, and also results in some PNs being
inhibited below their usual envelopes, (iv) octopamine and odor,

applied together, result in an overall excitation of PNs, and (v) the
AL behavior returns to baseline after octopamine is withdrawn,
since AL connection weights do not have (long-term) plasticity
(Davis, 2005).

2.2.2. KCs
In the MB, the KCs fire sparsely due to global inhibition from
the Lateral Horn. The only plastic connections in the AL-MB
system involve the KCs: Between PNs and KCs (MPK ,MQK in
section 4); and between KCs and extrinsic readout neurons (ENs)
(MKE in section 4). Thus the KC odor signatures are modulated
with training. Each row in the MB heatmap represents one of 500
randomly selected KCs in the simulation as it evolves in time (left
to right columns of heat map). Black regions indicate FRs < 1
spike/sec, white regions indicate FRs > 1 spike/sec. The white
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FIGURE 2 | In vivo firing rate data and model calibration: Comparison of PN firing rate activity from in vivo data and simulations. (A) Histograms and CDFs of in vivo

data and simulations. (Col a) Mean spontaneous FRs µs. (Col b) σs/µs of spontaneous FRs, a measure of noisiness of a PN. (Col c) Odor response, measured as

distance from µs in σs units. Distance > 2σs implies a strong activation/inhibition. (Col d) Odor response during octopamine, in σs units distance from µs. Note that

PN responses are broadened (i.e., more PNs are strongly activated or inhibited). The dotted line in the CDF inset is the same as the CDF of the odor response without

octopamine, to show the broadening toward both extremes. (Col e) Change in mean spontaneous FRs due to octopamine, measured in σs units distance from

(non-octopamine) µs. Some PNs are excited, some are inhibited. (B) Activity of PNs indexed by increasing spontaneous FR. Blue lines = mean spontaneous FRs µs

(cf col a). Shaded regions = σs, 2σs envelopes (cf col b). Solid red dots = odor response FRs (cf col c). Hollow red dots = odor response FRs during octopamine (cf

col d). Red lines show the change in odor response FRs due to octopamine (cf broadened response). Black stars (*) = spontaneous FRs during octopamine (cf col e).

In (A) cols c, d, e, the x-axes are expressed in units of σs, while in (B) the y-axis measures raw spikes/sec FR.

regions have been dilated to make the sparsely-firing KCs easier
to see.

The simulations demonstrate a number of key KC behaviors,
including (i) the baseline KC FR response absent any odor is
essentially zero, (ii) the two odors excite distinct sets of KCs with
varying consistency from noise trial to noise trial, (iii) for a given
odor, some KCs fire reliably in response to an odor stimulation
and some fire only occasionally, (iv) when subject to octopamine
but no odor, KCs are unresponsive, a benefit during learning
since it prevents environmental noise from being encoded as
meaningful, (v) when subject to both octopamine and odor, KCs

respond strongly to the odor with high trial-to-trial consistency,
and (vi) the global inhibition from the LH controls the level of
sparseness in the KCs, both their silence absent any odor (with or
without octopamine), and their sparse firing in response to odors.

Statistics of KC responses to odors pre-, during, and post-
training are shown in Figure 3. Naive moths have low KC
response to odors, in both percentage of KCs activated and
their consistency of response to odor stimulations (Figure 3,
blue dots and curves). During training octopamine induces high
KC response, in both percentage and consistency (Figure 3,
red dots and curves). After octopamine is withdrawn, KC
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FIGURE 3 | KC responses to odor during training: KCs respond sparsely to odor pre- and post-training, i.e., absent octopamine (blue and green dots and curves).

Octopamine induces transient increased responsivity (red dots and curves). Training results in permanent increases in response to the trained odor, but no increase in

response to control odor (green dots and curves). (A) KC response to an odor before, during, and after training. x-axis: indexed KCs (500 shown). y-axis: consistency

of response (in %). The plots are for odor 1 as the trained odor (i.e., same data as B). Blue = pre-training (no octopamine). Red = during training (with octopamine);

note the heightened transient response. Green = post-training (no octopamine). There is a permanent increase in the number of KCs that respond to the trained odor.

(B) Response rate vs. percentage of active KCs for trained and control odors before, during, and after training. x-axis: percentage of KCs responding at the given rate.

y-axis: consistency of response (in %). Blue, pre-training; Red, during octopamine (transient); Green, post-training. The LH plot shows odor 1 as the reinforced odor.

The scatterplots in (A) correspond to the three curves in this plot. Note that the permanent KC response curve shifts up and to the right (blue→green) in the trained

odor, i.e., more KCs respond to the odor (right shift) and they respond more consistently (upward shift). The RH plot shows odor 2 as a control. The control’s

permanent KC response curve does not shift. (C) As (B) above, but in this experiment odor 1 is now the control (LH plot), and odor 2 is reinforced (RH plot). In this

case, the response curve of odor 2 (reinforced) shifts to the right (blue→green), while the response curve of odor 1 (control) is unchanged.

response is lower than during training, but remains higher than
naive levels in both percentage and consistency (Figure 3, green
dots and curves) for the trained odor only. Thus the newly-
learned importance of the trained odor is encoded as broader
and stronger KC responses by means of strengthened synaptic
connections.

EN (readout neuron) activity is also shown over time at the
bottom of Figure 1. Learning is evidenced by the increased EN
response to the trained odor even after octopamine has been
withdrawn, due to Hebbian growth of synaptic connections into
and out of the MB.

The FR activity of the PNs in the AL, the KCs in the MB,
and the ENs, as illustrated in Figures 1, 3, demonstrate the entire
learning process that occurs under the influence of octopamine
stimulation. Without octopamine, learning does not occur.

Interestingly, although the AL does not itself experience
plasticity changes, it is the AL’s increased FR activity (induced by
octopamine) which enables permanent synaptic weight changes
in the MB via Hebbian plastic updates.

2.3. Learning Experiments: EN Behavior
A key finding of this paper is that the AL-MB model
demonstrates robust learning behavior. Here “learning” is
defined as permanently modifying synaptic weights in the system
so that the reinforced odor yields a significantly stronger response
in the readout neuron (EN) post-training, relative to naive (i.e.,
pre-training) response to that odor, and also relative to the
post-training responses to control odors.

2.3.1. Structure of Learning Experiments
Moths were randomly generated from a fixed parameter
template, which included randomly-assigned input maps
(odor→AL) for four odors. The odors projected broadly onto
the AL, each odor hitting ∼20 out of 60 glomeruli. As a result,
their projections onto the AL overlapped substantially. A
combinatorial calculation (4 independent draws of “60 choose
20”) shows that, on average, a given odor projected uniquely
onto about 6 glomeruli, and shared its other 14 glomeruli with
other odors. Each generated moth was put through a series of
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training experiments, with each run in the series structured as
follows:

1. The moth first received a series of stimulations from each
odor, to establish a baseline (naive) EN response. The
stimulations were 0.2 s long and separated by gaps of several
seconds.

2. The moth was trained on one of the odors for 1–4 sessions
(one session = 5 odor stimulations), by applying odor
and octopamine concurrently. The MB plastic weights were
updated according to a Hebbian rule.

3. Upon completion of training, the four odors were each again
applied as a series of odor stimulations, to establish post-
training EN response.

For each {odor, #sessions} pair, this experiment was conducted 11
times (i.e., 11 noise realizations), for a total of 176 experiments on
each moth. These results were aggregated to assess the particular
moth’s learning response.

2.3.2. Learning Experiment Results
As a general rule, Network Model moths consistently
demonstrated strong learning behavior in terms of EN response:
Training increased EN response to the trained odor well beyond
naive levels, and also much more than it affected EN response to
control odors. Figure 4 summarizes the changes in EN responses
in a typical experiment on a moth with four odors. Figure 4A
shows a typical noise realization timecourse, where one odor
was reinforced with octopamine and the other three odors
were controls. Figure 4B shows the statistics of EN response
modulation, according to {odor, #sessions} pairs.

For ease of interpretation, the moth shown in Figure 4 had
naive EN responses of roughly equal magnitude for all four odors.
When naive EN response magnitudes were highly uneven (> 3x),
robust learning still occurred, but the interpretation of the results
is more complex due to scaling issues. A typical experiment
using a moth with odor responses of highly unequal magnitude
is shown in Supplementary Material.

FIGURE 4 | Effect of training on EN FRs: (A) Typical timecourse of EN responses from an experiment with a single moth. First, 16 stimulations of each odor were

delivered, to establish naive odor responses. Note EN response variability due to noise in the system, especially in the AL. Next, the moth was trained on the first (blue)

odor trained over 2 sessions (10 stimulations), by delivering odor and octopamine concurrently. This timecourse corresponds to the {odor, #sessions} pair in the first

column in (B), at index 2 on the x-axis. Octopamine was then withdrawn, and the four odors were again delivered in series of stimulations, to establish post-training

changes in EN response. The long green line represents a hypothetical trigger threshold, such that EN response > threshold would induce a distinct behavior. (B) EN

response changes due to training, aggregated results with 11 noise realizations for each {odor, #sessions} pair. Each column shows results of training a given odor,

color coded: blue, purple, red, green. x-axis = number of training sessions. First row: The y-axis measures percent change in EN FR. The line shows mean percent

change. The error bars show ±1, 2 stds. Second row: The y-axis measures percent changes in EN response, relative to the trained odor (i.e., subtracting the trained

odor’s change from all odors). This shows how far each control odor lags behind the trained odor. The line shows mean percent lag. The error bars show ±1, 2 stds.
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2.3.3. Points of Interest (EN Responses to Learning)
1. Because EN response is driven solely by feed-forward signals

from KCs, ENs had response ≈ 0 in the absence of odor,
with or without octopamine, as expected (since KCs are silent
absent any odor). Thus Hebbian growth during training did
not increase EN baseline (no-odor) response.

2. The EN response to odor + octopamine was always very
strong, as seen in Figure 4A, where EN responses to odor
+ octopamine extend above the top of the figure. Note that
this effect follows automatically from the calibration of the
Network Model to in vivo data. Its functional value to the
moth is addressed in the section 3.

3. Training consistently increased the EN response to the
reinforced odor much more than EN response to control
odors, measured as percentage of naive odor response.

Since the Network Model did not include a Hebbian decay
dynamic (for simplicity, absent clear evidence), this was the
key indicator of robust learning. That is, focused learning was
expressed by substantially higher increase in EN response to
reinforced vs. control odors. We assume that an added Hebbian
decay term would have knocked smaller increases back, thus
returning control odor responses to baseline.

Results of ANOVA analysis for differential effects of training
on reinforced vs unreinforced odors shows that when naive odor
EN responsemagnitudes were similar (within 3x of each other) p-
values were consistently<0.01. ANOVA analysis results are given
in Supplementary Material.

2.4. MB Sparsity Experiments
Projection into a high-dimensional, sparse layer is a common
motif in biological neural systems (Ganguli and Sompolinsky,
2012; Litwin-Kumar et al., 2017). To explore the role of MB
sparsity during learning, we ranNetworkModel experiments that
varied the level of generalized inhibition imposed on the MB (the
lateral horn, LH, controls MB sparsity level). Each experiment set
a certain level of LH inhibition, then ran simulations (see section
4) that trained moths on one odor with 15 odor stimulations and
left one control odor untrained. EN responses to both trained
and control odors were recorded, as well as the percentage of KCs
active in response to odor.

Too little damping from the LH resulted in a high percentage
of KCs being active (low sparsity). This regime gave consistent EN
responses to odor. But it also caused EN responses to both control
odor and noise to increase significantly during training, reducing
the contrast between EN responses to trained and control odors
and also increasing spontaneous EN noise.

Too much damping resulted in a very low percentage of KCs
being active (high sparsity). This ensured that training gains
were focused on the trained odor while EN response to control
odors and noise were not boosted. However, in this regime EN
responses to all odors, both pre- and post-training, were generally
unreliable because too few KCs were activated.

Thus sparseness in the high-dimensional MB fulfilled a vital
role in the Network Model’s learning system. LH inhibition of
the MB had an optimal sparsity regime that balanced opposing
demands: KC firing had to be sufficiently dense for reliable odor

response on one hand, and sufficiently sparse for well-targeted
Hebbian growth on the other. Timecourses illustrating the
effects of too-little or too-much sparsity are seen in Figure 5A.
Figure 5B shows how this trade-off varied with MB sparsity, by
plotting two figures-of-merit:

Signal-to-Noise Ratio (SNR) =
µ(f )

σ (f )
, where (1)

f = EN odor response.

“Learning Focus” =
µ(fT)

µ(fC)
, where (2)

µ(f T) = mean post-training EN response to trained odor,
µ(fC)=mean post-training EN response to control odor.

3. DISCUSSION

Because we took a distinct approach to designing our Network
Model, and because we had access to unique in vivo octopamine
data, our experiments yield novel insights into the moth olfactory
network and how it learns. This discussion focuses on four areas:
(i) predictions about aspects of the AL-MB still unclear in
the literature, (ii) the role of sparse layers, (iii) the role of
octopamine, and (iv) the value of noise. In addition, we consider
these insights in the context of Machine Learning.

3.1. Predictions Re Details of AL-MB
Structure
Because our Network Model in tethered to a particular system,
both the calibration process and simulations offer hints as
to some unresolved biophysical aspects of the moth’s AL-MB
system. Some examples:

3.1.1. Do LNs Inhibit PNs and LNs as Well as RNs
In the AL, LNs have a net inhibitory effect on PNs (Lei et al.,
2002; Olsen et al., 2010), but the exact means to this end are not
clear. In particular, while LNs are known to inhibit RNs (Olsen
et al., 2010), it is less clear whether or to what degree LNs also
directly inhibit PNs and LNs. Efforts to calibrate our Network
Model to in vivo data indicate that LNs need to inhibit not just
RNs, but also (to a lesser degree) LNs and PNs. The model weight
strengths for LN→RN, →LN, and →PN are in the ratio of
6:2:1. That LNs would inhibit LNs makes sense when the goal is
maximizing PN output of the active glomerulus: By inhibiting the
LNs of rival glomeruli, the active glomerulus reduces the amount
of inhibition directed at itself. Similarly, that LNs would inhibit
PNs makes sense if the goal is to reduce the PN output of rival
glomeruli.

3.1.2. Octopamine’s Effects on Different Neuron

Types
Octopamine increases the responsivity of a neuron to incoming
signals. It is unclear how or whether octopamine affects various
neuron types (i.e., RNs, PNs, LNs, KCs). Calibration of the
Network Model’s AL behavior, and tuning of KC behavior to
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FIGURE 5 | Effects of sparsity on learning and EN reliability. Results for a typical experiment on a moth with two odors. (A) EN responses timecourses for two odors,

at varying levels of KC activation (a,b: <1%. c,d: 5–15%. e,f: 20–45%. Order of events: three stimulations of each odor as baseline, train on first odor (only one

session shown), then three stimulations each post-training. At very sparse levels (a,b) training is focused but odor response is not reliable. At low sparsity levels (e,f)

training is unfocused, boosting EN response to control odor and to background noise. (B) Two Figures of Merit (FoMs) plotted against MB sparsity. Low KC activation

(high sparsity) correlates with well-focused learning, but low odor response SNR. High KC activation (low sparsity) correlates with poorly-focused learning, but high

odor response SNR. The FoMs are each normalized for easier plotting. y-axis: Blue data: µ(f )
σ (f )

, a measure of odor EN response SNR, where f = EN odor response.

Red data:
µ(fT )
µ(fC )

, a measure of learning focus, where µ(fT ) = mean EN post-training response to reinforced odor; µ(fC) = mean EN post-training response to control

odor (values are thresholded at 1 for plotting). A high value indicates that increases in EN response due to training were focused on the trained odor; low values

indicate that irrelevant signal (FC) was also boosted by training. The points are experimental data, the curves are cubic fits. Vertical green lines indicate the 5–15%

sparsity region, typical in biological neural systems.

enable learning, indicate that octopamine needs to target RNs and
LNs, but not PNs, KCs, or ENs. Logical arguments support these
findings:

RNs: Because RNs initially receive the odor signal, these are
logical neurons to stimulate with octopamine, because it sharpens
their response to the exact signature being trained, which in turn
sharpen the AL’s output code for that odor.

LNs: LNs have the dual roles of inhibiting rival glomeruli and
limiting overall PN output in the AL. For the first role, increased
LN response to RNs will tend to sharpen AL response to the
trained odor, by accentuating inhibition of rival glomeruli PNs.
For the second role, increased LN activity mitigates the risk that

increased RN activity (due to octopamine) might blow up the
overall PN output of the AL.

PNs:OurNetworkModel simulations suggest that PNs should
receive little or no octopamine stimulation. While increasing
PN responsivity would benefit RN-induced sharpening of the
trained odor’s signature, there are three downsides. First, RN
input to PNs is intrinsically noisy, so higher PN responsivity
amplifies noise as well as signal. Second, since PNs respond
to LNs, higher PN activity tends to reduce the impact of LN
inhibition, and thus reduces the inhibition-induced sharpening
of the AL odor response caused by octopamine. Third,
increasing PN responsivity can have an outsize effect on overall
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PN firing rates, i.e., it is a “high-gain” knob and therefore
risky.

KCs: Our Network Model simulations indicate that direct
octopamine stimulation of KCs greatly reduces sparseness in
the MB (given the mechanics of our global inhibition on KCs),
which can be disastrous to learning. Thus we expect that
octopamine has no, or only slight, direct stimulative effect on
KCs. However, other forms of global inhibition might admit
direct octopamine stimulation of KCs while still preserving
sparsity: (i) If the strength of the Lateral Horn’s inhibition
signal tracks the AL output, then octopamine stimulation of
KCs would be offset by increased inhibition from the LH,
due to increased AL output to the LH, preserving sparsity;
(ii) if the KC population generates the inhibition signal, as in
Lin et al. (2014), then octopamine stimulation of KCs would
result in a counteractive stronger inhibition, again preserving
sparsity. The arguments for why PNs should receive very
little direct octopamine stimulation (given above) apply to
KCs as well; but it is also possible that direct stimulation of
KCs might improve learning by enabling random exploration
of the odor-coding solution space (as mooted below for
octopamine).

3.2. Noise Filtering Role of the Sparse,
High-Dimensional Stage
Projection from a dense, low-dimensional coding space (eg
the AL) to a sparse, high-dimensional coding space (e.g.,
KCs in the MB) is a widespread motif of biological neural
systems, with size shifts routinely on the order of 20x–100x
(Ganguli and Sompolinsky, 2012; Babadi and Sompolinsky, 2014;
Litwin-Kumar et al., 2017). Some proposed reasons include
information capacity, long-range brain communication, and
reduced training data needs (Ganguli and Sompolinsky, 2012),
as well as better inherent discrimination ability (Bazhenov
et al., 2013; Litwin-Kumar et al., 2017; Peng and Chittka,
2017).

Our Network Model experiments highlight another key role
of sparseness, relevant to learning: It acts as a robust noise
filter that prevents the Hebbian growth process from amplifying
upstream noise to out-of-control levels. Though noise may be
useful (or unavoidable) in upstream networks such as the AL,
noise that reaches the neurons on both sides of a plastic synaptic
connection will be amplified by Hebbian growth during learning,
swamping the system’s downstream neurons (e.g., ENs) with
noise.

However, the “fire together, wire together” principle of
Hebbian learning is an AND gate. Thus it suffices to remove noise
from just one of the two connected neurons to eliminate synaptic
growth. Sparsity does precisely this, and is arguably a necessary
part of a workable Hebbian learning mechanism. We also find
that high sparsity focuses learning (even absent upstream noise),
i.e., it enables better learned separation of classes, in agreement
with (Huerta and Nowotny, 2009; Peng and Chittka, 2017). The
negative effect of high sparsity on SNR (Figure 5) found in
our experiments meshes with a similar observation in Nowotny
(2009).

Setting aside the particular demands of Hebbian plasticity,
robust noise filtering may be a core function of sparse, high-
dimensional stages within any network cascade where noise
accumulates due to (beneficial) use in upstream stages.

3.3. Roles of Octopamine
The levels of octopamine stimulation in our Network Model
were calibrated to in vivo data on PN responses to octopamine.
Thus, our simulations give novel insights into downstream effects
of octopamine on plasticity, KC responses, EN responses, and
Hebbian learning.

3.3.1. Accelerant
Moths can learn to respond to new odors remarkably quickly,
in just a few exposures. Our simulations indicates that while
Hebbian growth can occur without octopamine, it is so slow that
actionable learning, i.e., in terms of amplified EN responses, does
not occur.

This implies that octopamine, through its stimulative effect,
acts as a powerful accelerant to learning. Perhaps it is a
mechanism that allows themoth to work around intrinsic organic
constraints on Hebbian growth of new synapses, constraints
which would otherwise restrict the moth to an unacceptably slow
learning rate. To the degree that octopamine enabled a moth to
learn more quickly, with fewer training samples, it would clearly
be highly adaptive.

3.3.2. Active Learning
Our simulations indicate that octopamine strongly stimulates the
EN response to even an unfamiliar odor. Since octopamine is
delivered as a reward, this has a beneficial effect in the context of
reinforcement learning (Sutton and Barto, 1998), with the moth
as the learning agent. An agent (themoth) can in some cases learn
more quickly when it has choice as to the sequence of training
samples (Active Learning, Settles, 2012).

In particular, when a certain class of training sample is
relatively rare, it benefits the agent to actively seek out more
samples of that class (Attenberg and Provost, 2010). Octopamine
enforces high EN response to a reinforced odor, ensuring that
ENs will consistently exceed their “take action” threshold during
training. If the action is to “approach,” the moth is more likely to
again encounter the odor, thus reaping the benefits predicted by
Active Learning theory. This advantage applies in the context of
positively-reinforced odors.

In the case of aversive learning, the high EN responses to
unfamiliar but objectionable odors, due to dopamine, would
cause the moth to preferentially avoid further examples of
the odor. This would slow learning of aversive responses (a
drawback), but would also minimize the moth’s exposure to bad
odors (danger avoidance, a benefit).

3.3.3. Exploration of Optimization Space
A limitation of Hebbian growth is that it can only reinforce
what already exists. That is, it only strengthens channels that
are transmitting signals deemed (by association) relevant to the
stimulus being reinforced. Absent a mechanism like octopamine,
this constrains growth to channels that are already active. Our
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simulations indicate that octopamine induces much broader
activity, both upstream from and within the plastic layer, thus
activating new transmitting channels. This allows the system to
strengthen, and bring permanently online, synaptic connections
that were formerly silent. This expands the solution space the
system can explore during learning. This function may be
particularly important given the constraint of sparsity placed on
odor codes in the MB.

3.3.4. Injury Compensation
There is evidence that many forms of injury to neurons result in
dropped spikes and thus lower firing rates in response to odors
(Maia and Kutz, 2017). This injury-induced drop in the signals
reaching the ENs could induce behavioral consequences, by
lowering EN responses to below key behavioral action thresholds.
Experiments in Delahunt et al. (2018) suggest that octopamine
drives a mechanism to compensate for this type of neural injury.

Suppose that injury has reduced an upstream neural signal,
such that a downstream EN can no longer exceed its behavioral
action threshold. Octopamine stimulation of the upstream
network will temporarily boost the reduced (injured) signal
strength, so that the input signals to the ENs are above
threshold during training. This in turn allows Hebbian growth
to strengthen the synaptic connections to those ENs. Once
octopamine is withdrawn, the inputs from the (still-injured)
upstream network revert to their reduced level. But due to the
newly-strengthened connection weights, these reduced inputs
suffice to push EN response above its action threshold, restoring
EN-controlled behaviors to their pre-injury baseline.

This mechanism (octopamine stimulation plus Hebbian
synaptic growth) might allow neural systems to regain behavioral
function lost due to damage to upstream regions, by increasing
connection strengths downstream from the point of injury.
Indeed, given the vital importance of injury mitigation to
survival, it is possible that the “learning” mechanism originally
evolved for the purpose of restoring behavioral function impaired
by neural damage.

3.4. The Value of Noise
Noise in biological neural systems is believed to add value
(besides just being cheap), for example by encoding probability
distributions and enabling neural Baysian estimations of
posteriors (Ma et al., 2006). In addition, injection of noise while
training engineered NNs can improve trained accuracy (An,
1996). Our experiments indicate that in the AL-MB, noise has
two other potential benefits, coupled with a caveat.

First, noise in the AL adds an extra dimension to MB
odor encoding, increasing the granularity of its odor responses
(Figure 3). The MB responds to odors in two ways: (i) by the
number of KCs that are responsive, and (ii) by the reliability (eg
from 10 to 100%) of their responses. This can be seen in the effect
of octopamine on KC odor response, Figure 3B. Octopamine
boosts MB odor response by increasing the number of active KCs
(horizontal shift in response curves) and also by increasing the
reliability of responsive KCs (vertical shift in responsivity curves).
Both these shifts represent a stronger MB response and translate
into stronger EN response.

Taken together, they provide a finer granularity of the response
range than does the binary response of a noise-free system.
That is, the MB response to noisy inputs from the AL is a
concrete example of a mechanism used by a neural system to
translate the probability distributions encoded by noisy neurons
into actionable signals with high dynamic range and granularity.

Second, the system is also potentially robust to noisy stimuli.
In the neural net context, input samples (i.e., inputs to the
feature-reading layer) can be thought of as a de facto “first layer”
of the neural net. A system that is robust to upstream noise
may also be naturally robust to noisy inputs, a further potential
advantage of judicially-placed sparse layers.

The caveat is that noise in the AL-MB must be confined to the
AL, i.e., upstream from the encoding layer, in order to protect the
readout neurons and Hebbian learning mechanism from noise.
The system’s success depends on robust noise filtering at the
MB layer, via global inhibition from the LH. So the three-stage
architecture consisting of: “Noisy pre-amplifier layer → Sparse
noise-reduction layer → Decision layer” is an interdependent
system well-suited to nuanced decision-making.

3.5. Applications to Machine Learning
The model and simulations in this paper characterize key
features of the AL-MB system which might usefully be ported to
machine learning algorithms. These features include: Generalized
stimulation during training; Hebbian growth; sparse layers to
control plastic connections and filter noise; and noisy initial
layers. Advantages of this biological toolkit include:

3.5.1. Fast Learning
Moths can reliably learn a new odor in less than 10 exposures,
and biological brains in general can learn given very few
training samples. This contrasts by orders of magnitude with
the voracious data demands of DNNs, for which assembling
sufficient training data can be a serious chokepoint in
deployment. Indeed, when learning handwritten digits from very
few samples (1–10 per class), an insect brain outperforms ML
methods including CNNs Delahunt and Kutz (2018). These “fast
and rough” biological mechanisms, seen in the moth in their
simplest form, thus have potential to act as a complement to the
precise but slow learning of DNNs.

3.5.2. Robustness to Noise
The sparse layer in the AL-MB acts as an effective noise filter,
protecting the readout neurons from a noisy upstream layer (the
AL). Since the system is designed to accommodate upstream
noise, it is possible that it can also readily accommodate noisy
input samples. NNs have a troublesome property, that input-
output score functions are not locally continuous (Szegedy et al.,
2013). Biological neural nets seem to avoid this particular fault
(or at least have different, complementary discontinuities). The
noisy layer → sparse layer motif may be one reason for this. It
may thus be a useful motif to apply in ML architectures.

3.5.3. Novel Training Mechanism
Hebbian growth, combined with octopamine stimulation and
the focusing effect of sparse layers, is a novel (in the context
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of ML) mechanism to explore a solution space and train a
classifier. In particular, it works on a different principle than the
backprop algorithm that drives DNNs: It does not minimize a
loss function via gradient descent, nor does it punish incorrect
answers; rather, it selectively strengthens those connections that
transmit meaningful signals, and weakens connections that are
inactive.We argue that this biological optimizationmechanism is
of potential value toML because it is (i) functionally distinct from
the backprop algorithm currently used, and (ii) known to succeed
in regimes (e.g., rapid learning) where backprop struggles.

3.5.4. Biological Plausibility
One characteristic (not criticism) of backprop is its biological
implausibility, since it requires a neuron to have more than local
knowledge of the system. A current area of interest, especially in
the context of DNNs (Bengio and Fischer, 2015), is the search
for neural network architectures (for example with recurrent
connections to transport non-local information) and variants of
backprop which are biologically plausible, which might narrow
the gap between biological and engineeredNNs. Our experiments
demonstrate that the triad of octopamine stimulation+Hebbian
growth + sparse layers can efficiently train a NN, and is thus a
possible candidate to address the biological plausibility gap.

4. MATERIALS AND METHODS

This section gives a detailed description of the biological moth
olfactory network, as well as our Network Model. The biological
detail is relevant because our model is built “from the ground up,”
i.e., it is based on a particular organism, rather than being a “top-
down,” more theoretically-based, architecture. We also provide a
Glossary, and describe the in vivo data used formodel calibration.

4.1. Moth Olfactory System Overview
The parts of the AL-MB implicated in learning are organized as a
feed-forward cascade of five distinct networks, as well as a reward
mechanism (Kvello et al., 2009;Martin et al., 2011). Figure 1 gives
a system schematic along with typical firing rate (FR) timecourses
(from simulation) for neurons in each network.

1. Antennae. Roughly 30,000 noisy chemical receptors detect
odor and send signals to the Antenna Lobe (Masse et al., 2009).

2. Antenna Lobe (AL). Contains roughly 60 units (glomeruli),
each focused on a single odor feature (Martin et al., 2011).
The AL essentially acts as a pre-amp, boosting faint signals
and denoising the antennae inputs (Bhandawat et al., 2007).
AL neurons are noisy (Galizia, 2014).

3. Lateral Horn (LH). Though not fully understood, one key
function is global inhibition of theMushroom Body to enforce
sparseness (Bazhenov and Stopfer, 2010).

4. Mushroom Body (MB), here synonymous with the Kenyon
Cells (KCs). About 4,000 KCs are located in the calyx of the
Mushroom Body (MB). These fire sparsely and are believed
to encode odor signatures (Campbell and Turner, 2010;
Honegger et al., 2011; Perisse et al., 2013). KCs are believed
to be relatively noise-free (Perez-Orive et al., 2002).

5. Extrinsic Neurons (ENs), numbering ∼10’s, located
downstream from the KCs. These are believed to be
“readout neurons” that interpret the KC codes and convey
actionable messages (such as “fly upwind”) (Campbell et al.,
2013; Hige et al., 2015).

6. Reward Mechanism. A large neuron sprays octopamine
globally over the AL and MB, in response to reward, such
as sugar at the proboscis. Learning does not occur without
this octopamine input (Hammer and Menzel, 1995, 1998).
The neuromodulator dopamine works similarly, but drives
aversive learning (Dacks et al., 2012).

7. Inter-network connections: In the AL-MB these are strictly
feed-forward, either excitatory or inhibitory. In particular,
Antennae→AL, AL→LH, KCs→ENs are all excitatory.
LH→KCs is inhibitory. AL→KCs have both excitatory and
inhibitory channels.

8. Plasticity: The connections into the KCs (AL→KCs) and
out of the KCs (KCs→ENs) are known to be plastic during
learning (Cassenaer and Laurent, 2007; Masse et al., 2009).
The AL does not have long-term plasticity (Davis, 2005).

4.2. Component Networks and Their
Network Model Representations
This subsection offers a more detailed discussion of the
constituent networks in the biological AL-MB, and details about
how they are modeled in our Network Model.

4.2.1. Antennae and Receptor Neurons
The Antennae receptors, activated by chemical molecules in the
air, send excitatory signals to Receptor Neurons (RNs) in the AL.
Several thousand antennae converge onto 60 units (glomeruli) in
the AL (Nagel and Wilson, 2011). All the receptors for a given
atomic volatile converge onto the same glomerulus in the AL, so
the glomeruli each have distinct odor response profiles (Deisig
et al., 2006). Since natural odors are a blend of atomic volatiles, a
natural odor stimulates several units within the AL (Riffell et al.,
2009b).

Our model does not explicitly include antennae. Rather, the
first layer of the model consists of the RNs entering the glomeruli.
Though ∼500 RNs feed a given glomerulus, the model assumes
one RN. The benefit of many RNs converging appears to be noise
reduction through averaging (Olsen et al., 2010). This can be
simulated by one RN with a smaller noise envelope.

Each glomerulus’ RN has a spontaneous FR and is excited,
according to random weights, by odor stimuli.

4.2.2. Antenna Lobe and Projection Neurons
The AL is fairly well characterized in both structure and
dynamics, with a few important gaps. It contains about 60
glomeruli, each a distinct unit which receives RN input and
projects to the KCs via excitatory PNs. The same PN signal
also projects to the LH (Bazhenov and Stopfer, 2010). The AL,
unique among the networks, has inhibitory lateral neurons (LNs)
(Wilson and Laurent, 2005), the only neurons that are not strictly
feed-forward. (There is some evidence of excitatory LNs, e.g.,
Olsen et al., 2008; the Network Model excludes this possibility.)
The LNs act as a gain control on the AL, and also allow odors to
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FIGURE 6 | Detail of neural connections within a glomerulus. Red, inhibitory;

green, excitatory; blue, increases responsiveness. RNs enter from the

antennae. LNs enter from other glomeruli; one full LN is shown. It is not known

if octopamine modulates LNs and PNs (see section 3.1).

mask each other by inhibiting other glomeruli’s RNs (Olsen and
Wilson, 2008; Hong and Wilson, 2015). It is not known whether
LNs also inhibit PNs and LNs. Based on calibrations to in vivo
data, in Network Model LNs inhibit all neuron types (cf section
3.1). Thus each glomerulus contains dendrites (i.e., outputs) for
PNs and LNs, and axons (i.e., inputs) for RNs and LNs, as shown
in Figure 6.

Each glomerulus does the following: Receives RN input from
the antennae receptors upstream; inhibits other glomeruli within
the AL via LNs; and sends excitatory signals downstream via
Projection Neurons (PNs).

In general, each PN is innervated in a single glomerulus.
In moths, there are ∼5 PNs rooted in each glomerulus (60
glomeruli,∼300 PNs). The NetworkModel assumes all PNs from
a given glomerulus carry the same signal (because they share the
same glomerulus and therefore inputs, and perhaps also because
of ephaptic binding) (Sjoholm, 2006).

Glomeruli also initiate pooled Inhibitory Projection Neurons
(QNs) that send inhibitory signals downstream to the KCs.

The AL contains a powerful macro-glomerulal complex
(MGC), which processes pheromone. Because pheromone
response has fundamentally different dynamics than food odor
response (Jefferis et al., 2007), the model ignores it. Only the
glomeruli associated with non-pheromone (food) odors are
modeled.

Connections in the AL are not plastic with long-term
persistence (Dacks et al., 2012). While some evidence of short-
term plasticity exists, the Network Model ignores this option.

4.2.3. Lateral Horn
The LH receives input from the PNs. It then sends an inhibitory
signal to the KCs. This inhibition from the LH appears to ensure
that the KCs fire very sparsely and thus act as coincidence
detectors for signals from the AL (Sjoholm, 2006; Gruntman and
Turner, 2013; Lin et al., 2014).

The LH is also suspected of containing a parallel system for
processing certain intrinsically-known odors in short-cut fashion
(labeled lines) (Luo et al., 2010). Since this parallel system is
(by definition) not involved with learning, the Network Model
ignores it. The LH is modeled solely as a simple sparsifying
inhibition on the KCs.

[Note: The locust and honeybee, which have more complex
olfactory systems and different use-cases in terms of odor
processing, have a time-oscillating depolarization mechanism
(local potential fields, LPF) Perez-Orive et al., 2002 which serves
a similar purpose to LH inhibition in the moth. LPF oscillations
are absent in the moth Martin et al., 2011.]

4.2.4. Mushroom Body and Kenyon Cells
The KCs (∼4,000) in the MB are believed to encode odor
memories in a high-dimensional, sparse space (Turner et al.,
2008). Odors with no meaning to the moth still have non-zero
codes in the KCs.

KCs receive excitatory input from the PNs and inhibitory
input from QNs, both of which vary greatly between KCs, since
each KC is innervated by only∼10 PNs (Martin et al., 2011). The
connection map appears to be random (Caron et al., 2013). The
KCs also receive generalized damping inhibition from the LH.
(There is some evidence in drosophila of an MB→MB global
inhibitory neuron Lin et al., 2014, with the same essential effect
as LH inhibition; the Network Model excludes this possibility.)
KCs fire very sparsely, generally respond to only a single odor,
and are silent absent that odor (Honegger et al., 2011). KCs are
treated as noise-free. Their output is an excitatory signal sent to
the extrinsic neurons (ENs) Campbell et al. (2013).

In addition to olfactory input, the KCs receive input signals
from other parts of the moth (e.g., hearing) (Sjoholm, 2006).
Because the Network Model targets olfactory learning, it ignores
these other inputs and uses a reduced number of KCs (∼2,000
instead of∼4,000).

The synaptic connections in the MB (PNs→KCs, QNs→KCs,
and KCs→ENs) are plastic, i.e., they can be modified during
training (Menzel and Manz, 2005). The generalized inhibition
from LH→KCs is modeled as non-plastic (actual physiology is
not known). This LH inhibition is modeled as a global damping
term on KCs, giving dynamics equation equivalent to the Pitt-
McColloch approximation (McCulloch and Pitts, 1943) as used in
Huerta and Nowotny (2009), Bazhenov et al. (2013), Mosqueiro
and Huerta (2014), and peng2017.

4.2.5. Extrinsic Neurons
Though located in the lobes of the MB, here ENs are not
considered part of theMB, which is taken to be synonymous with
the KCs. ENs are few in number compared to the KCs (∼10s )
(Campbell et al., 2013; Hige et al., 2015). They are believed to
be “readout” neurons, that interpret the KC codes as actionable
signals (eg “approach,” “avoid”) (Masse et al., 2009). We assume
that ENs trigger actions when their output FRs exceed some
threshold.

We define Learning as: Permanently boosting EN responses
beyond their naive (untrained) level, so that EN responses to
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reinforced stimuli can consistently exceed an action-triggering
threshold. This is tantamount to modifying the moth’s behavior.

4.2.6. Octopamine (Reward Circuit)
A large neuron delivers octopamine to the entire AL and MB, in
response to positive stimuli, e.g., sugar at the proboscis. It acts
as a reward feedback to the system. A similar neuron delivers
dopamine to the AL and MB in response to negative stimuli, and
acts as an aversive feedback signal (Dacks et al., 2012). Learning
does not occur without octopamine (or dopamine) (Hammer and
Menzel, 1998).

Despite their opposite reward values, both octopamine and
dopamine act in the same way when sprayed on a neuron:
They increase the neuron’s general tendency to fire (Riffell et al.,
2012). In the Network Model this effect is modeled as making a
neuronmore responsive to excitatory inputs (e.g., from odors and
RNs) and less responsive to inhibitory inputs (e.g., from LNs).
Details of octopamine’s effects if any on particular neural types
are not well-characterized. In the Network Model octopamine
directly affects RNs and LNs but not PNs in the AL (cf section
3.1); has no direct effect on KCs or ENs (though there are
strong indirect effects); and has no effect on the LH inhibitory
signal.

It is unclear whether octopamine delivery to both the MB
and AL is necessary and sufficient for learning (Hammer and
Menzel, 1998; Dacks et al., 2012). The Network Model assumes
that octopamine controls an “on/off” switch for Hebbian growth,
i.e., there is no plasticity in the MB (and therefore no learning)
without octopamine.

4.3. Network Model Model Description
This section describes our Network Model model in detail.
It covers the firing rate measure used to compare model
output to in vivo data; model dynamics; plasticity and
other details; model parameters; and moth generation.
All coding was done in Matlab. Computer code for
the Network Model in this paper will be found at:
https://github.com/charlesDelahunt/SmartAsABug.

4.3.1. Model Dynamics
Our Network Model uses standard firing rate dynamics (Dayan
and Abbott, 2005) (chapter 7), evolved as stochastic differential
equations (Higham., 2001). We use a firing rate model for two
reasons. First, it is the simplest model able to both capture
the key response and learning dynamics of the moth, and
also allow calibration to our in vivo datasets. Our in vivo
datasets are spike trains and thus admit use of an integrate-and-
fire or Izhikevich model; but at the cost of more parameters,
higher complexity, and longer simulation times, without (in
our eyes) commensurate benefit. Second, and importantly, we
wish to apply our results to engineered NNs, which makes a
firing rate model the natural choice due to its close similarities
to NNs.

The firing rate model is formulated as follows:
Let x(t)= firing rate (FR) for a neuron. Then

τ
dx

dt
= −x+ s(6wiui) = −x+ s(w · u), where (3)

w= connection weights;
u= upstream neuron FRs;
s() is a sigmoid function or similar.

PN dynamics are given here as an example. Full model
dynamics are given in Supplementary Material. PNs are
excitatory, and project forward from AL→MB:

τ
dP

dt
= −P+ s(̃P)+ dWPwhere (4)

W(t)= brownian motion process;
P̃=−(1− γ o(t)MOP)*MLP*uL+(1+o(t)MOP)*MRP*uR;
MOP = octopamine→PN weight matrix (diagonal nG× nG);
MLP = LN→PN weight matrix (nG× nG with trMLP = 0);
MRP = RN→PN weight matrix (diagonal nG× nG);
o(t) indicates if octopamine is active (o(t)= 1 during training, 0
otherwise).
uL = LN FRs, vector nG× 1;
uR = RN FRs (nG× 1);
γ = scaling factor for effects on inhibition.

4.3.2. Discretization
The discretization uses Euler-Maruyama (E-M), a standard step-
forward method for SDEs (Higham., 2001).
Euler (i.e., noise-free): xn+1 = xn + 1tf (xn)
Euler-Maruyama: xn+1 = xn + 1tf (xn) + ǫ randn(0,1)

√
1t,

where ǫ controls the noise intensity.

4.3.3. Convergence
Timestep1t was chosen such that noise-free E-M evolution gives
the same timecourses as Runge-Kutta (4th order), via Matlab’s
ode45 function.1t = 10mSec suffices tomatch E-M evolution to
R-K in noise-free moths. Values of 1t ≤ 20 mS gives equivalent
simulations in moths with AL noise calibrated to match in vivo
data. Values of 1t ≥ 40 mS show differences in evolution
outcomes given AL noise.

4.3.4. Plasticity
Themodel assumes a Hebbian mechanism for growth in synaptic
connection weights (Hebb, 1949; Cassenaer and Laurent, 2007).
That is, the synaptic weight wab between two neurons a and b
increases proportionally to the product of their firing rates (“fire
together, wire together”): 1wab(t) ∝ fa(t)fb(t).
Thus, synaptic plasticity is defined by:

1wab(t) = γ fa(t)fb(t), where γ is a growth parameter. (5)

There are two layers of plastic synaptic weights, pre- and post-
MB: AL→MB (MP,K ,MQ,K), and MB→ENs (MK,E) . Learning
rate parameters of the Network Model were calibrated to
match experimental effects of octopamine on PN firing rates
and known moth learning speed (e.g., 4–8 trials to induce
behavior modification) (Riffell et al., 2012). The Network Model
does not decay unused synaptic weights. Training does not
alter octopamine delivery strength matrices (MO,*). That is, the
neuromodulator channels are not plastic (unlike, for example, the
case in Grant et al., 2017).
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4.3.5. Odor and Octopamine Injections
Odors and octopamine are modeled as hamming windows. The
smooth leading and trailing edges ensures low stiffness of the
dynamic ODEs, and allows a 10 mS timestep to give accurate
evolution of the SDEs in simulations.

4.3.6. Training
Training on an odor consists of simultaneously applying
stimulations of the odor, injecting octopamine, and “switching
on” Hebbian growth. Training with 5–10 odor stimulations
typically produces behavior change in live moths.

4.4. Firing Rate Measure
To compare PN firing rate statistics from in vivo experiments and
from Network Model simulations (i.e., model calibration), we
use a measure of firing rate (FR) based on Mahalanobis distance,
similar to the measure DF

F common in the literature (Silbering
and Galizia, 2007; Turner et al., 2008; Campbell et al., 2013; Hong
and Wilson, 2015). The premise is that neurons downstream
respond to a ±1 std change in FRs equally (modulo different
connection weights), independent of the sometimes large (up
to 40x) magnitude differences in the raw spontaneous FRs of
different neurons. The FR measure is defined as follows:

1. Each PN has a spontaneous firing rate (FR) with a gaussian
noise envelope.

2. PNs with FR< 1 spike/sec are ignored, on the assumption that
such PNs represent artifacts of experiment (also, the gaussian
noise assumption fails). About 10% of PNs from in vivo data
fall in this category.

3. Output FR activity of PNs is measured as M(t) = distance
from mean spontaneous FR, in units of time-varying std dev
of spontaneous FR (i.e., Mahalanobis distance): Let
F(t)= raw firing rate (spikes per second).
S(t)= spontaneous firing rate (no odor).
µS(t)=moving average of S (no odor).
µ̄S(t) = smoothed estimate of the moving average µS, eg a
quadratic or spline fit.
σS(t)= standard deviation of S, calculated using S− µ̄S values
within a moving window centered on t.
σS(t) and µS(t) are typically steady absent octopamine, but
are often strongly modulated by octopamine.
Then the measure of FR activityM is:

M(t) =
F(t)− µ̄S(t)

σS(t)
(6)

4. M is related to the measure DF
F :

DF
F = 1F

F = F(t)−µS
µS , i.e., DF

F is change in FR, normalized

by spontaneous FR. The key difference between M and DF
F is

whether or how σS is estimated, due to varying exigencies of
experiment. Our experimental data allow reasonable estimates
of σS and µS. Network Model simulations produce very
good estimates, since computer models are more amenable to
repeated trials than live moths.

4.5. Model Parameters
There is a risk, when modeling a system, of adding too many free
parameters in an effort to fit the system. Fewer free parameters
are better, for the sake of generality and to avoid overfitting.
Conversely, we wish to reasonably match the physiological
realities of the system. Because the key goal of this paper was
to demonstrate that a simple model, in terms of parameters and
structure, can reproduce the learning behavior of the AL-MB,
we made efforts to minimize the number of free parameters.
For example, neuron-to-neuron connections in the model are
defined by their distributions, i.e., two parameters each. These
are (usually) distinct for different source-to-target pairs (eg
LN→RN, LN→LN, etc).
Some mean and std dev parameters for distributions are shared
among different neuron types (e.g., LNs, PNs, and QNs all share
the same variance scaling parameter).

4.5.1. Parameter List
The model has in total 47 free parameters:

1. Structure: 5 (e.g., number of neurons in each network)
2. Dynamics: 12 (noise: 2. decay and sigmoid: 3. Hebbian growth:

6. misc: 1).
3. Spontaneous RN FRs: 3.
4. Connection matrices: 27 (controlling non-zero connection

ratios: 5; synaptic weights (egMP,K ,MR,P): means 12, std devs
4; octopamine weights (e.g.,MO,R,MO,P): means 6, std devs 2).

4.5.2. Dynamics Parameters
The differential equations of all neuron types share the same
decay rate, set to allow return to equilibrium in ∼1 s, consistent
with in vivo data. Neurons also share parameters of the sigmoid
function within the differential equation. Noise added via the
SDE model is controlled by a single parameter ǫ, the same for
all neuron types. It is determined by empirical constraint on σS

µS ,

as shown in column 2 of Figure 2.

4.5.3. Connection Matrix Generation
Connection weight matrices (eg MP,K etc) are generated in a
standard way, fromGaussian distributions with std dev σ defined
proportional to the mean µ, using a scaling factor v:
M∗,∗ ∼ N(µc, σ

2
c ) where µc depends on the neuron types being

connected, and σc = vµc. Many connection types typically share
the same v.

A special feature of the AL is that all the neurons in a
given glomerulus share a common environment. For example,
all the neurons, of whatever type, in glomerulus A will share
the same strong (or weak) LN axon from glomerulus B. Thus,
the RN, LN, and PNs in a given glomerulus are all correlated.
In addition, neuron types are correlated. To model this dual set
of correlations, connection matrices in the AL are generated as
follows. As an example, consider LN connection matrices in the
AL:

1. A glomerulus-glomerulus connection matrix ML,G is created,
which defines LN arborization at the glomerular level.

2. This connection matrix is multiplied by a neural type-specific
value to give ML,P,ML,L, and ML,R connection matrices. This
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is particularly important when tuning the various inhibitory
effects of LNs on RNs, PNs (QNs), and LNs.

3. Sensitivity to GABA: A separate variance factor determines
glomerular sensitivity to GABA (i.e., sensitivity to inhibition).
This is tuned to match data in the literature Hong and Wilson
(2015), and applies to LN-to-PN(QN) (i.e.,ML,P) connections
only.

The goal of this two-stage approach is to enforce two types of
similarity found in the AL: (i) Connections to all neurons within
a single glomerulus are correlated; and(ii) connections to all
neurons of a certain type (LN, PN, RN) are correlated.

Due to constraints of the biological architecture there are
many zero connections. For example, about 85% of entries in the
AL→MBweight matrix are zero because MB neurons connect to
only ∼10 projection neurons (Caron et al., 2013). All MB→EN
weights are set equal at the start of training. Training leads rapidly
to non-uniform distributions as inactive connections decay and
active connections strengthen.

4.5.4. RN Spontaneous Firing Rates
RNs in the glomeruli of the AL have noisy spontaneous firing
rates (Bhandawat et al., 2007). The NetworkModel simulates this
by assigning spontaneous firing rates to RNs. These spontaneous
firing rates are drawn from a gamma distribution plus a bias:

γ (x|α,β , b) = b+ βα

Ŵ(α)
xα−1e−βx, where α,β are shape and rate

parameters, and Ŵ(·) is the Gamma function.
This can be thought of as a source of energy injected into
the system, at the furthest upstream point (absent odor).
Other energy sources are odor signals and octopamine. The
spontaneous firing rates of all other neurons in the Network
Model are the result of their dynamics as RN spontaneous FRs
propagate through the system.

4.6. Discrepancies Between Biology and
Model
There are some known discrepancies between our Network
Model and the moth AL-MB. These are listed below.

4.6.1. Connection Weight Distributions
This model version uses gaussian distributions to generate initial
connection weights. However, moths used in live experiments
are older and thus presumably have modified PN→KC and
KC→EN connection weights. If this modification was strong, we
might expect the connection weight distributions to tend toward
a scale-free rather than gaussian distribution (Barabasi and
Albert, 1999). This represents an unknown discrepancy between
structure parameters of the live moths used in experiments vs the
model.

4.6.2. Hebbian Pruning
The Network Model contains no pruning mechanism to offset,
via decay, the Hebbian growth mechanism. Such pruning
mechanisms are common in nature, so it is reasonable to suppose
that one might exist in the AL-MB. The moth has inhibitory
as well as excitatory feed-forward connections from AL to MB.
In the Network Model, pruning is functionally replaced by

Hebbian growth of QN→KC inhibitory connections, which act
to inhibit KCs and thus offset the growth of excitatory PN→KC
connections (this does not directly offset KC→EN Hebbian
growth). Thus omitting a separate Hebbian decay mechanism
is a matter of convenience rather than a match to known
biology.

4.6.3. Non-olfactory Input to KCs
In addition to olfactory input, the KCs receive signals from
other parts of the moth, eg hearing. Because this model targets
only olfactory learning, it ignores these other inputs to the
KCs, and reduces the total number of KCs (from ∼4,000 to
∼2,000).

4.6.4. Number of QNs
There are believed to be about 3–6 QNs projecting from the
AL to the MB. This model sets their number at about 15.
The reason is that, absent a Hebbian pruning system in the
model, the QNs function as the brake on runaway increases
in KC responses due to Hebbian growth. So the increased
number of QNs is a compensation for the lack of a weight-decay
system.

4.6.5. Number of ENs
This model version has only one EN, since its goal is to
demonstrate simple learning. The moth itself possesses multiple
ENs.

4.6.6. LH Inhibition
The LH→KC inhibitory mechanism used in this chapter is
modeled as a time-invariant global signal, delivered equally to all
KCs. This simplifies the model parameter space while retaining
the essential functionality of the LH. A more refined version
of LH→KC inhibition might vary in strength according to PN
output, since the same PN signals that excite the KCs also excite
the LH. The actual dynamics of the AL→LH→KC linkage are
not known, beyond the principle that inhibition from the LH
sparsifies the KC codes and makes the individual KCs act as
coincidence detectors.

4.7. In vivo Neural Recordings Data
Model parameters were calibrated by matching Network Model
performance to in vivo electrode readings from the ALs of live
moths. The various performance metrics are described in section
2.

Electrode data was collected by the lab of Prof Jeff Riffell (Dept
of Biology, UW). It consists of timecourses of PN firing rates
measured via electrode in the AL of live moths, during a variety
of regimes including:

1. Series of 0.2 s odor stimulations delivered without
octopamine. These experiments gave data re PN response
to odor relative to PN spontaneous (baseline) FRs, absent
octopamine.

2. Series of 0.2 s odor stimulations delivered coincident with
sugar reward (which delivers octopamine). This gave data re
how PN odor response is modulated by octopamine, relative
to octopamine-free spontaneous FR. see Figure 7A.
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FIGURE 7 | Time series of PN firing rates from in vivo experiments. x-axis = time, y-axis = FR. Blue lines = mean spontaneous rate, shaded regions = ±1 and 2 std.

Red dots are odor responses. Green dots are response to control (mineral oil). (A) PN response, given odor plus coincident sugar reward, ie plus octopamine (time

series for PNs with odor only are similar, but with less strong odor responses). Top row: unresponsive to odor. Middle row: excited response to odor. Bottom row:

inhibited response to odor. (B) PNs with octopamine wash added in mid-experiment, then rinsed away (duration shown by black line). Octopamine can alter (up,

down, or not at all) the spontaneous FR and/or the odor response, so there are 9 possible modulation regimes. This grid of timecourses shows a typical PN from each

regime. Top row: spontaneous FR in unaffected. Middle row: spontaneous FR is boosted. Bottom row: spontaneous FR is inhibited. First column: odor response is

unaffected. Second column: odor response is boosted. Third column: odor response is inhibited.

3. Series of 0.2 s odor stimulations, delivered first without
and then coincident with an octopamine wash applied
to the AL. This gave data re how PN spontaneous FR
and PN odor response are modulated by octopamine. see
Figure 7B.

In most cases the applied odor consisted of a collection of 5
volatiles, which taken together stimulate many glomeruli in the
AL. It was selected to ensure sufficient odor-responsive PNs, such

that inserted electrodes would detect interesting (i.e., responsive)
PNs. Further details re in vivo data collection can be found
in Shlizerman et al. (2014) and in Supplementary Material.
Example timecourses are shown in Figure 7.

4.8. Simulation Setup
For Network Model learning experiments, the time sequence of
events for simulations, shown in Figure 1, is as follows:
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1. A period of no stimulus, to assess baseline spontaneous
behavior.

2. Four odor stimuli are delivered, 16 stimulations each (two
odors were used in MB sparseness experiments).

3. A period of control octopamine, i.e., without odor or Hebbian
training.

4. The system is trained (odor + octopamine + Hebbian
mechanism) on one of the odors.

5. A period of no stimulus, to assess post-training spontaneous
behavior.

6. The odors are re-applied (16 stimulations each), without
octopamine, to assess effects of training on odor
response.

5. GLOSSARY

Antennal lobe (AL): A collection of neurons innervated by odor
receptors in the antennae. It sends signals to the mushroom body
via projection neurons. Connections in the AL are not plastic.
Mushroom body (MB): A collection of neurons (Kenyon cells–
KCs) downstream from the antenna lobe. The MB is believed to
store odor codes that serve as a memory, allowing the moth to
recognize odors. Connections in the MB are plastic.
Lateral horn (LH): A collection of neurons which receives input
from the AL and sends inhibitory output to the MB. One of its
roles is to enforce sparse firing in MB neurons.
Receptor neuron (RN): These neurons respond to odors
(volatiles) at the antennae and stimulate the antenna lobe. RNs
respond to different, distinct odors.
Glomerulus: The antenna lobe is divided into about 60
glomeruli, each of which is a self-contained collection of neurons
(projection and lateral), innervated by RNs that respond to
particular odors.
Projection neuron (PN): Each glomerulus contains projection
neurons, whose output innervates the KCs and also the lateral
horn, but not other glomeruli in the AL, i.e., they are feed-
forward only. Most PNs start in one glomerulus and are
excitatory. A few PNs arborize in several glomeruli and are
inhibitory (we refer to inhibitory PNs as “QNs”). Each glomerulus
initiates about five PNs.
Lateral neuron (LN): Each glomerulus contains lateral neurons,
which innervate other glomeruli in the AL. LNs are inhibitory.
One function is competitive inhibition among glomeruli.
Another function is gain control, i.e., boosting low signals and
damping high signals.

Kenyon cell (KC): Neurons in the calyx of the MB. These have

very low FRs, and tend to respond to particular combinations of
PNs. KCs respond sparsely to a given odor. There are about 4,000
KCs, i.e., a two-orders-of-magnitude increase over the number of
glomeruli. Each KC synapses with about ten PNs. Connections
into and out of KCs are plastic.
Extrinsic neuron (EN): A small number of neurons downstream
from the KCs. ENs are thought to be “readout” neurons. They
interpret the odor codes of the KCs, deciding to eg “ignore,”
“approach,” or “avoid”.
Firing rate (FR): The number of spikes/second at which a
neuron fires. Typically FRs are counted using a window (e.g.,
500 ms). The moth’s response to odor stimulations is episodic,
with FR spikes in FR and rapid return to spontaneous FRs.
Neurons respond to relative changes in FR, rather than to raw
magnitude changes. A neuron’s relative change in FR is scaled by
its spontaneous FR (see section 4.4 below).
Octopamine: A neuromodulator which stimulates neural firing.
The moth spritzes octopamine on both the AL and MB in
response to sugar, as a feedback reward mechanism. Dopamine
has a similar stimulating effect on both AL and MB, but it
reinforces adverse rather than positive events.
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